mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-04 00:23:41 +08:00
335 lines
11 KiB
GLSL
335 lines
11 KiB
GLSL
#version 120
|
|
//Volumetric fog rendering
|
|
//#extension GL_EXT_gpu_shader4 : disable
|
|
|
|
#include "/lib/settings.glsl"
|
|
|
|
flat varying vec4 lightCol;
|
|
flat varying vec3 sunColor;
|
|
flat varying vec3 moonColor;
|
|
|
|
flat varying vec3 averageSkyCol_Clouds;
|
|
flat varying vec3 averageSkyCol;
|
|
|
|
flat varying float tempOffsets;
|
|
uniform sampler2D noisetex;
|
|
uniform sampler2D depthtex0;
|
|
uniform sampler2D depthtex1;
|
|
uniform sampler2DShadow shadow;
|
|
flat varying vec3 refractedSunVec;
|
|
flat varying vec3 WsunVec;
|
|
|
|
// uniform sampler2D colortex1;
|
|
// uniform sampler2D colortex3;
|
|
// // uniform sampler2D colortex0;
|
|
// uniform sampler2D colortex7;
|
|
// uniform sampler2D colortex13;
|
|
// uniform sampler2D colortex4;
|
|
|
|
uniform vec3 sunVec;
|
|
uniform float far;
|
|
uniform float near;
|
|
uniform int frameCounter;
|
|
uniform float aspectRatio;
|
|
uniform float rainStrength;
|
|
uniform float sunElevation;
|
|
uniform ivec2 eyeBrightnessSmooth;
|
|
uniform ivec2 eyeBrightness;
|
|
uniform float frameTimeCounter;
|
|
uniform int isEyeInWater;
|
|
uniform vec2 texelSize;
|
|
|
|
|
|
// uniform int worldTime;
|
|
|
|
#include "/lib/Shadow_Params.glsl"
|
|
#include "/lib/color_transforms.glsl"
|
|
#include "/lib/color_dither.glsl"
|
|
#include "/lib/projections.glsl"
|
|
#include "/lib/sky_gradient.glsl"
|
|
#include "/lib/res_params.glsl"
|
|
|
|
|
|
#define TIMEOFDAYFOG
|
|
#include "/lib/volumetricClouds.glsl"
|
|
#include "/lib/bokeh.glsl"
|
|
|
|
|
|
float blueNoise(){
|
|
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
|
}
|
|
float R2_dither(){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ;
|
|
}
|
|
float R2_dither2(){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha.x *(1- gl_FragCoord.x) + alpha.y * (1-gl_FragCoord.y) + 1.0/1.6180339887 * frameCounter) ;
|
|
}
|
|
float interleaved_gradientNoise(){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
vec2 coord = vec2(alpha.x * gl_FragCoord.x,alpha.y * gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter;
|
|
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
|
return noise;
|
|
}
|
|
|
|
|
|
|
|
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
|
|
|
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
|
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
|
vec2 movement = vec2(-0.035*frameTimeCounter);
|
|
float caustic = 0.0;
|
|
float weightSum = 0.0;
|
|
float radiance = 2.39996;
|
|
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
|
|
|
const vec2 wave_size[4] = vec2[](
|
|
vec2(64.),
|
|
vec2(32.,16.),
|
|
vec2(16.,32.),
|
|
vec2(48.)
|
|
);
|
|
|
|
for (int i = 0; i < 4; i++){
|
|
pos = rotationMatrix * pos;
|
|
|
|
vec2 speed = movement;
|
|
float waveStrength = 1.0;
|
|
|
|
if( i == 0) {
|
|
speed *= 0.15;
|
|
waveStrength = 2.0;
|
|
}
|
|
|
|
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
|
|
|
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
|
|
|
weightSum -= exp2(caustic*0.1);
|
|
}
|
|
return caustic / weightSum;
|
|
}
|
|
|
|
// vec3 normVec (vec3 vec){
|
|
// return vec*inversesqrt(dot(vec,vec));
|
|
// }
|
|
|
|
#include "/lib/volumetricFog.glsl"
|
|
|
|
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
|
int spCount = 8;
|
|
|
|
|
|
vec3 start = toShadowSpaceProjected(rayStart);
|
|
vec3 end = toShadowSpaceProjected(rayEnd);
|
|
vec3 dV = (end-start);
|
|
|
|
|
|
|
|
//limit ray length at 32 blocks for performance and reducing integration error
|
|
//you can't see above this anyway
|
|
float maxZ = min(rayLength,48.0)/(1e-8+rayLength);
|
|
dV *= maxZ;
|
|
vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
|
|
rayLength *= maxZ;
|
|
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
|
|
|
// dVWorld *= maxZ
|
|
|
|
|
|
vec3 progressW = (gbufferModelViewInverse[3].xyz+cameraPosition);
|
|
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
|
|
|
// vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
|
// vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
vec3 absorbance = vec3(1.0);
|
|
vec3 vL = vec3(0.0);
|
|
|
|
float phase = phaseg(VdotL,0.5) * 1.5 + 0.1;
|
|
lightSource *= clamp(abs(WsunVec.y)*5,0.,1.);
|
|
|
|
float cloudShadow = 1;
|
|
float expFactor = 11.0;
|
|
for (int i=0;i<spCount;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
|
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
|
vec3 spPos = start.xyz + dV*d;
|
|
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
// vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
|
|
|
//project into biased shadowmap space
|
|
float distortFactor = calcDistort(spPos.xy);
|
|
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
|
float sh = 1.0;
|
|
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
sh = shadow2D( shadow, pos).x;
|
|
}
|
|
|
|
// #ifdef VL_CLOUDS_SHADOWS
|
|
// sh *= GetCloudShadow_VLFOG(progressW);
|
|
// #endif
|
|
|
|
vec3 p3 = mat3(gbufferModelViewInverse) * rayEnd;
|
|
vec3 np3 = normVec(p3);
|
|
float ambfogfade = clamp(exp(np3.y*1.5 - 1.5),0.0,1.0) ;
|
|
vec3 ambientMul = exp(-max(estEyeDepth - dY * d,0.0) * waterCoefs) + ambfogfade*0.5 * clamp(eyeBrightnessSmooth.y/240.0,0.1,1.0);
|
|
vec3 sunMul = exp(-max((estEyeDepth - dY * d) ,0.0)/abs(refractedSunVec.y) * waterCoefs)*cloudShadow;
|
|
|
|
float sunCaustics = waterCaustics(progressW, WsunVec);
|
|
sunCaustics = max(pow(sunCaustics*3,2),0.5);
|
|
|
|
vec3 light = (sh * lightSource * phase * sunMul * sunCaustics + (ambient*ambientMul))*scatterCoef;
|
|
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
|
|
absorbance *= exp(-dd * rayLength * waterCoefs);
|
|
}
|
|
inColor += vL;
|
|
}
|
|
|
|
vec4 RainRays(vec3 rayStart, vec3 rayEnd, float rayLength, float dither, vec3 ambient, vec3 lightSource, float VdotL){
|
|
int spCount = 8;
|
|
|
|
vec3 start = toShadowSpaceProjected(rayStart);
|
|
vec3 end = toShadowSpaceProjected(rayEnd);
|
|
vec3 dV = (end-start);
|
|
|
|
|
|
//limit ray length at 32 blocks for performance and reducing integration error
|
|
//you can't see above this anyway
|
|
float maxZ = min(rayLength,1000)/(1e-8+rayLength);
|
|
|
|
// min(length(dVWorld),far)/length(dVWorld);
|
|
dV *= maxZ;
|
|
vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
|
|
rayLength *= maxZ;
|
|
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
|
vec3 progressW = (gbufferModelViewInverse[3].xyz+cameraPosition);
|
|
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
|
|
|
|
|
|
|
float absorbance = 1.0;
|
|
vec3 vL = vec3(0.0);
|
|
|
|
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
float mie = phaseg(VdotL,0.7);
|
|
float rayL = phaseRayleigh(VdotL);
|
|
|
|
float cloudShadow = 1;
|
|
float expFactor = 11.0;
|
|
for (int i=0;i<spCount;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
|
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
|
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
float sh = 1.0;
|
|
#ifdef VL_CLOUDS_SHADOWS
|
|
sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
|
#endif
|
|
|
|
float density = clamp(CumulusHeight - progressW.y,0,1) ;
|
|
vec3 m = density*mC;
|
|
vec3 DirectLight = (lightSource*sh) * (m*mie);
|
|
|
|
vec3 vL0 = DirectLight*25 ;
|
|
|
|
|
|
vL += (vL0 - vL0 * exp(-m*dd*rayLength)) / (m+0.00000001)*absorbance;
|
|
absorbance *= dot(clamp(exp(-m*dd*rayLength),0.0,1.0), vec3(0.333333));
|
|
}
|
|
return vec4(vL,0);
|
|
}
|
|
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
|
|
void main() {
|
|
/* DRAWBUFFERS:0 */
|
|
float lightleakfix = max(eyeBrightnessSmooth.y,0)/240.;
|
|
|
|
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
|
|
float z = texture2D(depthtex0,tc).x;
|
|
|
|
#if DOF_QUALITY == 5
|
|
vec2 jitter = clamp(jitter_offsets[frameCounter % 64], -1.0, 1.0);
|
|
jitter = rotate(radians(float(frameCounter))) * jitter;
|
|
jitter.y *= aspectRatio;
|
|
jitter.x *= DOF_ANAMORPHIC_RATIO;
|
|
jitter.xy *= 0.004 * JITTER_STRENGTH;
|
|
|
|
vec3 fragpos_DOF = toScreenSpace(vec3((tc + jitter)/RENDER_SCALE,z));
|
|
#endif
|
|
|
|
if (isEyeInWater == 0){
|
|
|
|
|
|
vec3 fragpos = toScreenSpace(vec3(tc/RENDER_SCALE,z));
|
|
|
|
#ifdef Cumulus
|
|
#ifdef Cloud_Fog
|
|
vec4 VL_CLOUDFOG = InsideACloudFog(fragpos, vec2(R2_dither(),blueNoise()), lightCol.rgb/80., moonColor/150., averageSkyCol/30.);
|
|
|
|
// vec4 rays = vec4(0.0);
|
|
// if(rainStrength > 0.0){
|
|
// rays = RainRays(vec3(0.0), fragpos, length(fragpos), R2_dither(), (avgAmbient*2.0) * 8./150./3., lightCol.rgb, dot(normalize(fragpos), normalize(sunVec) ));
|
|
// VL_CLOUDFOG += rays * rainStrength;
|
|
// }
|
|
|
|
gl_FragData[0] = clamp(VL_CLOUDFOG, 0.0,65000.);
|
|
#else
|
|
|
|
vec4 VL_Fog = getVolumetricRays(fragpos, blueNoise(), averageSkyCol);
|
|
gl_FragData[0] = clamp(VL_Fog,0.0,65000.);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
vec4 VL_Fog = getVolumetricRays(fragpos, blueNoise(), averageSkyCol);
|
|
gl_FragData[0] = clamp(VL_Fog,0.0,65000.);
|
|
|
|
#endif
|
|
|
|
|
|
} else {
|
|
|
|
float dirtAmount = Dirt_Amount;
|
|
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
|
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
|
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
|
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B);
|
|
|
|
#ifdef AEROCHROME_MODE
|
|
totEpsilon *= 2.0;
|
|
scatterCoef *= 10.0;
|
|
#endif
|
|
|
|
vec3 fragpos = toScreenSpace(vec3(tc/RENDER_SCALE,z));
|
|
float noise = blueNoise();
|
|
vec3 vl = vec3(0.0);
|
|
float estEyeDepth = clamp((14.0-eyeBrightnessSmooth.y/255.0*16.0)/14.0,0.,1.0);
|
|
estEyeDepth *= estEyeDepth*estEyeDepth*34.0;
|
|
|
|
|
|
vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
|
vec3 ambientColVol = (averageSkyCol_Clouds/30.0) + lightningColor;
|
|
vec3 lightColVol = (lightCol.rgb / 80.);
|
|
estEyeDepth = max(Water_Top_Layer - cameraPosition.y,0.0);
|
|
|
|
waterVolumetrics(vl, vec3(0.0), fragpos, estEyeDepth, estEyeDepth, length(fragpos), noise, totEpsilon, scatterCoef, ambientColVol, lightColVol*(1.0-pow(1.0-sunElevation*lightCol.a,5.0)) , dot(normalize(fragpos), normalize(sunVec) ));
|
|
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
|
|
}
|
|
}
|