Bliss-Shader/shaders/dimensions/composite.fsh

545 lines
15 KiB
GLSL

#include "/lib/settings.glsl"
#ifndef DH_AMBIENT_OCCLUSION
#undef DISTANT_HORIZONS
#endif
flat varying vec3 WsunVec;
flat varying vec2 TAA_Offset;
#include "/lib/res_params.glsl"
uniform sampler2D depthtex0;
uniform sampler2D depthtex1;
#ifdef DISTANT_HORIZONS
uniform sampler2D dhDepthTex;
uniform sampler2D dhDepthTex1;
#endif
uniform sampler2D colortex1;
uniform sampler2D colortex3; // Noise
uniform sampler2D colortex6; // Noise
uniform sampler2D colortex8; // Noise
uniform sampler2D colortex14; // Noise
uniform sampler2D colortex12; // Noise
uniform sampler2D colortex15; // Noise
uniform sampler2D shadow;
#ifdef TRANSLUCENT_COLORED_SHADOWS
uniform sampler2D shadowcolor0;
uniform sampler2D shadowtex0;
uniform sampler2D shadowtex1;
#endif
uniform sampler2D noisetex;
uniform vec3 sunVec;
uniform vec2 texelSize;
uniform float frameTimeCounter;
uniform float rainStrength;
uniform int frameCounter;
uniform mat4 gbufferModelViewInverse;
uniform mat4 gbufferModelView;
uniform vec3 cameraPosition;
uniform mat4 gbufferProjection;
uniform mat4 gbufferProjectionInverse;
uniform vec3 previousCameraPosition;
uniform mat4 gbufferPreviousProjection;
uniform mat4 gbufferPreviousModelView;
uniform mat4 shadowModelView;
uniform mat4 shadowProjection;
uniform float viewWidth;
uniform float aspectRatio;
uniform float viewHeight;
// uniform float far;
uniform float near;
uniform float dhFarPlane;
uniform float dhNearPlane;
#define ffstep(x,y) clamp((y - x) * 1e35,0.0,1.0)
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
vec3 toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
vec3 p3 = p * 2. - 1.;
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
return fragposition.xyz / fragposition.w;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
{
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28+alpha * nbRot * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*alpha;
}
vec2 tapLocation2(int sampleNumber, int nb, float jitter){
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28 + alpha * 84.0 * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*sqrt(alpha);
}
vec3 decode (vec2 encn){
vec3 n = vec3(0.0);
encn = encn * 2.0 - 1.0;
n.xy = abs(encn);
n.z = 1.0 - n.x - n.y;
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
return clamp(normalize(n.xyz),-1.0,1.0);
}
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
return fract( a * constant1 ) * constant2 ;
}
float interleaved_gradientNoise_temporal(){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
float R2_dither(){
#ifdef TAA
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
#else
vec2 coord = gl_FragCoord.xy;
#endif
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
}
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
vec4 blueNoise(vec2 coord){
return texelFetch2D(colortex6, ivec2(coord )%512 , 0);
}
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n);
}
vec3 viewToWorld(vec3 viewPos) {
vec4 pos;
pos.xyz = viewPos;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
#include "/lib/Shadow_Params.glsl"
const float PI = 3.141592653589793238462643383279502884197169;
vec2 SpiralSample(
int samples, int totalSamples, float rotation, float Xi
){
Xi = max(Xi,0.0015);
float alpha = float(samples + Xi) * (1.0 / float(totalSamples));
float theta = (2.0 *3.14159265359) * alpha * rotation;
float r = sqrt(Xi);
float x = r * sin(theta);
float y = r * cos(theta);
return vec2(x, y);
}
vec2 CleanSample(
int samples, float totalSamples, float noise
){
// this will be used to make 1 full rotation of the spiral. the mulitplication is so it does nearly a single rotation, instead of going past where it started
float variance = noise * 0.897;
// for every sample input, it will have variance applied to it.
float variedSamples = float(samples) + variance;
// for every sample, the sample position must change its distance from the origin.
// otherwise, you will just have a circle.
float spiralShape = variedSamples / (totalSamples + variance);
float shape = 2.26;
float theta = variedSamples * (PI * shape);
float x = cos(theta) * spiralShape;
float y = sin(theta) * spiralShape;
return vec2(x, y);
}
#include "/lib/DistantHorizons_projections.glsl"
float DH_ld(float dist) {
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
}
float DH_inv_ld (float lindepth){
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
}
float linearizeDepthFast(const in float depth, const in float near, const in float far) {
return (near * far) / (depth * (near - far) + far);
}
void convertHandDepth(inout float depth) {
float ndcDepth = depth * 2.0 - 1.0;
ndcDepth /= MC_HAND_DEPTH;
depth = ndcDepth * 0.5 + 0.5;
}
float convertHandDepth_2(in float depth, bool hand) {
if(!hand) return depth;
float ndcDepth = depth * 2.0 - 1.0;
ndcDepth /= MC_HAND_DEPTH;
return ndcDepth * 0.5 + 0.5;
}
vec2 SSAO(
vec3 viewPos, vec3 normal, bool hand, bool leaves, float noise
){
// if(hand) return vec2(1.0,0.0);
int samples = 7;
float occlusion = 0.0;
float sss = 0.0;
float dist = 1.0 + clamp(viewPos.z*viewPos.z/50.0,0,5); // shrink sample size as distance increases
float mulfov2 = gbufferProjection[1][1]/(3 * dist);
float maxR2 = viewPos.z*viewPos.z*mulfov2*2.0 * 5.0 / mix(4.0, 50.0, clamp(viewPos.z*viewPos.z - 0.1,0,1));
#ifdef Ambient_SSS
float maxR2_2 = viewPos.z;//*viewPos.z*mulfov2*2.*2./4.0;
float dist3 = clamp(1-exp( viewPos.z*viewPos.z / -50),0,1);
// if(leaves) maxR2_2 = 0.1;
// if(leaves) maxR2_2 = mix(10, maxR2_2, dist3);
#endif
vec2 acc = -(TAA_Offset*(texelSize/2.0))*RENDER_SCALE ;
// vec2 BLUENOISE = blueNoise(gl_FragCoord.xy).rg;
int n = 0;
float leaf = leaves ? -0.5 : 0.0;
for (int i = 0; i < samples; i++) {
// vec2 sampleOffset = (SpiralSample(i, 7, 8 , noise)) * mulfov2 * clamp(0.05 + i*0.095, 0.0,0.3) ;
vec2 sampleOffset = CleanSample(i, samples - 1, noise) * mulfov2 * 0.3 ;
ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE);
if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) {
#ifdef DISTANT_HORIZONS
float dhdepth = texelFetch2D(dhDepthTex1, offset,0).x;
#else
float dhdepth = 0.0;
#endif
vec3 t0 = toScreenSpace_DH((offset*texelSize+acc+0.5*texelSize) * (1.0/RENDER_SCALE), convertHandDepth_2(texelFetch2D(depthtex1, offset,0).x, hand), dhdepth);
vec3 vec = (t0.xyz - viewPos);
float dsquared = dot(vec, vec);
if (dsquared > 1e-5){
if( dsquared < maxR2){
float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.);
occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0);
}
#ifdef Ambient_SSS
sss += clamp(leaf - dot(vec, normalize(normal)),0.0,1.0);
#endif
n += 1;
}
}
}
return max(1.0 - vec2(occlusion*AO_Strength, sss)/n, 0.0);
}
vec4 encode (vec3 n, vec2 lightmaps){
n.xy = n.xy / dot(abs(n), vec3(1.0));
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
}
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
// #include "/lib/indirect_lighting_effects.glsl"
vec3 toClipSpace3Prev(vec3 viewSpacePosition) {
return projMAD(gbufferPreviousProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
}
vec3 closestToCamera5taps(vec2 texcoord, sampler2D depth, bool hand)
{
vec2 du = vec2(texelSize.x*2., 0.0);
vec2 dv = vec2(0.0, texelSize.y*2.);
vec3 dtl = vec3(texcoord,0.) + vec3(-texelSize, texture2D(depth, texcoord - dv - du).x);
vec3 dtr = vec3(texcoord,0.) + vec3( texelSize.x, -texelSize.y, texture2D(depth, texcoord - dv + du).x);
vec3 dmc = vec3(texcoord,0.) + vec3( 0.0, 0.0, texture2D(depth, texcoord).x);
vec3 dbl = vec3(texcoord,0.) + vec3(-texelSize.x, texelSize.y, texture2D(depth, texcoord + dv - du).x);
vec3 dbr = vec3(texcoord,0.) + vec3( texelSize.x, texelSize.y, texture2D(depth, texcoord + dv + du).x);
if(hand){
convertHandDepth(dtl.z);
convertHandDepth(dtr.z);
convertHandDepth(dmc.z);
convertHandDepth(dbl.z);
convertHandDepth(dbr.z);
}
vec3 dmin = dmc;
dmin = dmin.z > dtr.z ? dtr : dmin;
dmin = dmin.z > dtl.z ? dtl : dmin;
dmin = dmin.z > dbl.z ? dbl : dmin;
dmin = dmin.z > dbr.z ? dbr : dmin;
#ifdef TAA_UPSCALING
dmin.xy = dmin.xy/RENDER_SCALE;
#endif
return dmin;
}
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
float sampleDepth(sampler2D depthTex, vec2 texcoord, bool hand){
// return texture2D(depthTex, texcoord).r;
return convertHandDepth_2(texture2D(depthTex, texcoord).r, hand);
}
/* RENDERTARGETS:3,14,12*/
void main() {
float noise = R2_dither();
vec2 texcoord = gl_FragCoord.xy*texelSize;
float z = texture2D(depthtex1,texcoord).x;
#ifdef DISTANT_HORIZONS
float DH_depth1 = texture2D(dhDepthTex1,texcoord).x;
float swappedDepth = z >= 1.0 ? DH_depth1 : z;
#else
float DH_depth1 = 1.0;
float swappedDepth = z;
#endif
vec4 SHADOWDATA = vec4(0.0);
vec4 data = texture2D(colortex1,texcoord);
vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y));
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
vec3 normal = mat3(gbufferModelViewInverse) * clamp(worldToView( decode(dataUnpacked0.yw) ),-1.,1.);
vec2 lightmap = dataUnpacked1.yz;
gl_FragData[1] = vec4(0.0,0.0,0.0, texture2D(colortex14,floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize).a);
// bool lightningBolt = abs(dataUnpacked1.w-0.5) <0.01;
bool isLeaf = abs(dataUnpacked1.w-0.55) <0.01;
// bool translucent2 = abs(dataUnpacked1.w-0.6) <0.01; // Weak translucency
// bool translucent4 = abs(dataUnpacked1.w-0.65) <0.01; // Weak translucency
bool entities = abs(dataUnpacked1.w-0.45) < 0.01;
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
// bool blocklights = abs(dataUnpacked1.w-0.8) <0.01;
if(hand){
convertHandDepth(z);
}
vec3 viewPos = toScreenSpace_DH(texcoord/RENDER_SCALE - TAA_Offset*texelSize*0.5, z, DH_depth1);
#if defined DENOISE_SSS_AND_SSAO && indirect_effect == 1
float depth = z;
#ifdef DISTANT_HORIZONS
float _near = near;
float _far = far*4.0;
if (depth >= 1.0) {
depth = DH_depth1;
_near = dhNearPlane;
_far = dhFarPlane;
}
depth = linearizeDepthFast(depth, _near, _far);
depth = depth / dhFarPlane;
#endif
if(depth < 1.0)
gl_FragData[2] = vec4(vec3(0.0), depth * depth * 65000.0);
else
gl_FragData[2] = vec4(vec3(0.0), 65000.0);
vec3 FlatNormals = texture2D(colortex15,texcoord).rgb * 2.0 - 1.0;
if(z >= 1.0){
FlatNormals = normal;
}
vec2 SSAO_SSS = SSAO(viewPos, FlatNormals, hand, isLeaf, noise);
if(swappedDepth >= 1.0) SSAO_SSS = vec2(1.0,0.0);
gl_FragData[1].xy = SSAO_SSS;
#else
vec2 SSAO_SSS = vec2(1.0,0.0);
#endif
#ifdef OVERWORLD_SHADER
float SpecularTex = texture2D(colortex8,texcoord).z;
float LabSSS = clamp((-64.0 + SpecularTex * 255.0) / 191.0 ,0.0,1.0);
float NdotL = clamp(dot(normal,WsunVec),0.0,1.0);
float vanillAO = clamp(texture2D(colortex15,texcoord).a,0.0,1.0) ;
float minshadowfilt = Min_Shadow_Filter_Radius;
float maxshadowfilt = Max_Shadow_Filter_Radius;
// if(lightmap.y < 0.1 && !entities){
// maxshadowfilt = mix(minshadowfilt, maxshadowfilt, vanillAO);
// }
#ifdef BASIC_SHADOW_FILTER
if (LabSSS > 0.0 && NdotL < 0.001){
minshadowfilt = 50;
// maxshadowfilt = 50;
}
#endif
if (z < 1.0){
gl_FragData[0] = vec4(minshadowfilt, 0.1, 0.0, 0.0);
#ifdef Variable_Penumbra_Shadows
if (LabSSS > -1) {
vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
vec3 projectedShadowPosition = mat3(shadowModelView) * feetPlayerPos + shadowModelView[3].xyz;
projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
//apply distortion
#ifdef DISTORT_SHADOWMAP
float distortFactor = calcDistort(projectedShadowPosition.xy);
projectedShadowPosition.xy *= distortFactor;
#else
float distortFactor = 1.0;
#endif
//do shadows only if on shadow map
// if (abs(projectedShadowPosition.x) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.y) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.z) < 6.0 || length(feetPlayerPos) < far){
const float threshMul = max(2048.0/shadowMapResolution*shadowDistance/128.0,0.95);
float distortThresh = (sqrt(1.0-NdotL*NdotL)/NdotL+0.7)/distortFactor;
float diffthresh = distortThresh/6000.0*threshMul;
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5,0.5,0.5);
float mult = maxshadowfilt;
float avgBlockerDepth = 0.0;
vec2 scales = vec2(0.0, Max_Filter_Depth);
float blockerCount = 0.0;
float rdMul = distortFactor*(1.0+mult)*d0*k/shadowMapResolution;
float diffthreshM = diffthresh*mult*d0*k/20.;
float avgDepth = 0.0;
for(int i = 0; i < VPS_Search_Samples; i++){
// vec2 offsetS = SpiralSample(i, 7, 8, noise) * 0.5;
vec2 offsetS = CleanSample(i, VPS_Search_Samples - 1, noise) * 0.5;
float weight = 3.0 + (i+noise) *rdMul/SHADOW_FILTER_SAMPLE_COUNT*shadowMapResolution*distortFactor/2.7;
float d = texelFetch2D(shadow, ivec2((projectedShadowPosition.xy+offsetS*rdMul)*shadowMapResolution),0).x;
float b = smoothstep(weight*diffthresh/2.0, weight*diffthresh, projectedShadowPosition.z - d);
blockerCount += b;
#ifdef DISTANT_HORIZONS_SHADOWMAP
avgDepth += max(projectedShadowPosition.z - d, 0.0)*10000.0;
#else
avgDepth += max(projectedShadowPosition.z - d, 0.0)*1000.0;
#endif
avgBlockerDepth += d * b;
}
gl_FragData[0].g = avgDepth / VPS_Search_Samples;
gl_FragData[0].b = blockerCount / VPS_Search_Samples;
if (blockerCount >= 0.9){
avgBlockerDepth /= blockerCount;
float ssample = max(projectedShadowPosition.z - avgBlockerDepth,0.0)*1500.0;
gl_FragData[0].r = clamp(ssample, scales.x, scales.y)/(scales.y)*(mult-minshadowfilt)+minshadowfilt;
}
// }
}
#endif
}
#endif
}