mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2024-12-23 01:59:39 +08:00
cf3346232e
This reverts commit f8d1b0b8da
.
1624 lines
53 KiB
GLSL
1624 lines
53 KiB
GLSL
#include "/lib/settings.glsl"
|
|
|
|
// #if defined END_SHADER || defined NETHER_SHADER
|
|
// #undef IS_LPV_ENABLED
|
|
// #endifs
|
|
|
|
#ifdef IS_LPV_ENABLED
|
|
#extension GL_ARB_shader_image_load_store: enable
|
|
#extension GL_ARB_shading_language_packing: enable
|
|
#endif
|
|
|
|
#include "/lib/util.glsl"
|
|
#include "/lib/res_params.glsl"
|
|
|
|
|
|
#define diagonal3_old(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
|
#define projMAD_old(m, v) (diagonal3_old(m) * (v) + (m)[3].xyz)
|
|
|
|
const bool colortex5MipmapEnabled = true;
|
|
uniform float nightVision;
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
const bool shadowHardwareFiltering = true;
|
|
uniform sampler2DShadow shadow;
|
|
|
|
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
uniform sampler2D shadowcolor0;
|
|
uniform sampler2DShadow shadowtex0;
|
|
uniform sampler2DShadow shadowtex1;
|
|
#endif
|
|
|
|
flat varying vec3 averageSkyCol_Clouds;
|
|
flat varying vec4 lightCol;
|
|
|
|
#if Sun_specular_Strength != 0
|
|
#define LIGHTSOURCE_REFLECTION
|
|
#endif
|
|
|
|
#include "/lib/lightning_stuff.glsl"
|
|
#endif
|
|
|
|
#ifdef NETHER_SHADER
|
|
const bool colortex4MipmapEnabled = true;
|
|
uniform vec3 lightningEffect;
|
|
#undef LIGHTSOURCE_REFLECTION
|
|
#endif
|
|
|
|
#ifdef END_SHADER
|
|
uniform vec3 lightningEffect;
|
|
|
|
flat varying float Flashing;
|
|
#undef LIGHTSOURCE_REFLECTION
|
|
#endif
|
|
|
|
uniform int hideGUI;
|
|
uniform sampler2D noisetex; //noise
|
|
uniform sampler2D depthtex0;
|
|
uniform sampler2D depthtex1;
|
|
uniform sampler2D depthtex2;
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
uniform sampler2D dhDepthTex;
|
|
uniform sampler2D dhDepthTex1;
|
|
#endif
|
|
|
|
uniform sampler2D colortex0; //clouds
|
|
uniform sampler2D colortex1; //albedo(rgb),material(alpha) RGBA16
|
|
uniform sampler2D colortex2; //translucents(rgba)
|
|
uniform sampler2D colortex3; //filtered shadowmap(VPS)
|
|
uniform sampler2D colortex4; //LUT(rgb), quarter res depth(alpha)
|
|
uniform sampler2D colortex5; //TAA buffer/previous frame
|
|
uniform sampler2D colortex6; //Noise
|
|
uniform sampler2D colortex7; //water?
|
|
uniform sampler2D colortex8; //Specular
|
|
// uniform sampler2D colortex9; //Specular
|
|
uniform sampler2D colortex10;
|
|
uniform sampler2D colortex11;
|
|
uniform sampler2D colortex12;
|
|
uniform sampler2D colortex13;
|
|
uniform sampler2D colortex14;
|
|
uniform sampler2D colortex15; // flat normals(rgb), vanillaAO(alpha)
|
|
|
|
#ifdef IS_LPV_ENABLED
|
|
uniform usampler1D texBlockData;
|
|
uniform sampler3D texLpv1;
|
|
uniform sampler3D texLpv2;
|
|
#endif
|
|
|
|
|
|
// uniform mat4 shadowModelView;
|
|
// uniform mat4 shadowModelViewInverse;
|
|
// uniform mat4 shadowProjection;
|
|
// uniform mat4 shadowProjectionInverse;
|
|
// uniform mat4 gbufferProjection;
|
|
// uniform mat4 gbufferProjectionInverse;
|
|
// uniform mat4 gbufferModelView;
|
|
// uniform mat4 gbufferModelViewInverse;
|
|
// uniform mat4 gbufferPreviousProjection;
|
|
uniform mat4 gbufferPreviousModelView;
|
|
|
|
// uniform vec3 cameraPosition;
|
|
uniform vec3 previousCameraPosition;
|
|
|
|
// uniform float far;
|
|
uniform float near;
|
|
uniform float farPlane;
|
|
uniform float dhFarPlane;
|
|
uniform float dhNearPlane;
|
|
|
|
flat varying vec3 zMults;
|
|
|
|
uniform vec2 texelSize;
|
|
uniform float viewWidth;
|
|
uniform float viewHeight;
|
|
uniform float aspectRatio;
|
|
|
|
uniform float eyeAltitude;
|
|
flat varying vec2 TAA_Offset;
|
|
|
|
uniform int frameCounter;
|
|
uniform float frameTimeCounter;
|
|
|
|
uniform float rainStrength;
|
|
uniform int isEyeInWater;
|
|
uniform ivec2 eyeBrightnessSmooth;
|
|
|
|
uniform vec3 sunVec;
|
|
flat varying vec3 WsunVec;
|
|
flat varying vec3 unsigned_WsunVec;
|
|
flat varying float exposure;
|
|
|
|
#ifdef IS_LPV_ENABLED
|
|
uniform int heldItemId;
|
|
uniform int heldItemId2;
|
|
#endif
|
|
|
|
|
|
void convertHandDepth(inout float depth) {
|
|
float ndcDepth = depth * 2.0 - 1.0;
|
|
ndcDepth /= MC_HAND_DEPTH;
|
|
depth = ndcDepth * 0.5 + 0.5;
|
|
}
|
|
float convertHandDepth_2(in float depth, bool hand) {
|
|
if(!hand) return depth;
|
|
|
|
float ndcDepth = depth * 2.0 - 1.0;
|
|
ndcDepth /= MC_HAND_DEPTH;
|
|
return ndcDepth * 0.5 + 0.5;
|
|
}
|
|
|
|
#include "/lib/projections.glsl"
|
|
|
|
// vec3 toScreenSpace(vec3 p) {
|
|
// vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
|
|
// vec3 feetPlayerPos = p * 2. - 1.;
|
|
// vec4 viewPos = iProjDiag * feetPlayerPos.xyzz + gbufferProjectionInverse[3];
|
|
// return viewPos.xyz / viewPos.w;
|
|
// }
|
|
|
|
|
|
|
|
#define TESTTHINGYG
|
|
|
|
#include "/lib/color_transforms.glsl"
|
|
#include "/lib/waterBump.glsl"
|
|
|
|
#include "/lib/Shadow_Params.glsl"
|
|
#include "/lib/Shadows.glsl"
|
|
#include "/lib/stars.glsl"
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
|
|
#ifdef Daily_Weather
|
|
flat varying vec4 dailyWeatherParams0;
|
|
flat varying vec4 dailyWeatherParams1;
|
|
#else
|
|
vec4 dailyWeatherParams0 = vec4(CloudLayer0_coverage, CloudLayer1_coverage, CloudLayer2_coverage, 0.0);
|
|
vec4 dailyWeatherParams1 = vec4(CloudLayer0_density, CloudLayer1_density, CloudLayer2_density, 0.0);
|
|
#endif
|
|
|
|
#define CLOUDSHADOWSONLY
|
|
#include "/lib/volumetricClouds.glsl"
|
|
#define CLOUDS_INTERSECT_TERRAIN
|
|
#endif
|
|
|
|
|
|
#ifdef IS_LPV_ENABLED
|
|
#include "/lib/hsv.glsl"
|
|
#include "/lib/lpv_common.glsl"
|
|
#include "/lib/lpv_render.glsl"
|
|
#endif
|
|
|
|
#include "/lib/diffuse_lighting.glsl"
|
|
|
|
float ld(float dist) {
|
|
return (2.0 * near) / (far + near - dist * (far - near));
|
|
}
|
|
|
|
#include "/lib/sky_gradient.glsl"
|
|
vec3 decode (vec2 encn){
|
|
vec3 n = vec3(0.0);
|
|
encn = encn * 2.0 - 1.0;
|
|
n.xy = abs(encn);
|
|
n.z = 1.0 - n.x - n.y;
|
|
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
|
|
return clamp(normalize(n.xyz),-1.0,1.0);
|
|
}
|
|
vec2 decodeVec2(float a){
|
|
const vec2 constant1 = 65535. / vec2( 256., 65536.);
|
|
const float constant2 = 256. / 255.;
|
|
return fract( a * constant1 ) * constant2 ;
|
|
}
|
|
|
|
|
|
#include "/lib/end_fog.glsl"
|
|
|
|
|
|
#define DEFERRED_SPECULAR
|
|
#define DEFERRED_ENVIORNMENT_REFLECTION
|
|
#define DEFERRED_BACKGROUND_REFLECTION
|
|
#define DEFERRED_ROUGH_REFLECTION
|
|
|
|
#ifdef DEFERRED_SPECULAR
|
|
#endif
|
|
#ifdef DEFERRED_ENVIORNMENT_REFLECTION
|
|
#endif
|
|
#ifdef DEFERRED_BACKGROUND_REFLECTION
|
|
#endif
|
|
#ifdef DEFERRED_ROUGH_REFLECTION
|
|
#endif
|
|
|
|
#include "/lib/specular.glsl"
|
|
|
|
|
|
|
|
#include "/lib/DistantHorizons_projections.glsl"
|
|
|
|
float DH_ld(float dist) {
|
|
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
|
|
}
|
|
float DH_inv_ld (float lindepth){
|
|
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
|
|
}
|
|
|
|
float linearizeDepthFast(const in float depth, const in float near, const in float far) {
|
|
return (near * far) / (depth * (near - far) + far);
|
|
// return (2.0 * near) / (far + near - depth * (far - near));
|
|
}
|
|
float invertlinearDepthFast(const in float depth, const in float near, const in float far) {
|
|
return ((2.0*near/depth)-far-near)/(far-near);
|
|
}
|
|
|
|
|
|
vec3 normVec (vec3 vec){
|
|
return vec*inversesqrt(dot(vec,vec));
|
|
}
|
|
float lengthVec (vec3 vec){
|
|
return sqrt(dot(vec,vec));
|
|
}
|
|
|
|
// #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
|
|
|
float triangularize(float dither)
|
|
{
|
|
float center = dither*2.0-1.0;
|
|
dither = center*inversesqrt(abs(center));
|
|
return clamp(dither-fsign(center),0.0,1.0);
|
|
}
|
|
|
|
vec3 fp10Dither(vec3 color,float dither){
|
|
const vec3 mantissaBits = vec3(6.,6.,5.);
|
|
vec3 exponent = floor(log2(color));
|
|
return color + dither*exp2(-mantissaBits)*exp2(exponent);
|
|
}
|
|
|
|
|
|
|
|
// float facos(float sx){
|
|
// float x = clamp(abs( sx ),0.,1.);
|
|
// return sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 );
|
|
// }
|
|
|
|
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
|
|
{
|
|
float alpha0 = sampleNumber/nb;
|
|
float alpha = (sampleNumber+jitter)/nb;
|
|
float angle = jitter*6.28 + alpha * 4.0 * 6.28;
|
|
|
|
float sin_v, cos_v;
|
|
|
|
sin_v = sin(angle);
|
|
cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v)*sqrt(alpha);
|
|
}
|
|
|
|
|
|
vec3 BilateralFiltering(sampler2D tex, sampler2D depth,vec2 coord,float frDepth,float maxZ){
|
|
vec4 sampled = vec4(texelFetch2D(tex,ivec2(coord),0).rgb,1.0);
|
|
|
|
return vec3(sampled.x,sampled.yz/sampled.w);
|
|
}
|
|
|
|
float interleaved_gradientNoise_temporal(){
|
|
#ifdef TAA
|
|
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y ) + 1.0/1.6180339887 * frameCounter);
|
|
#else
|
|
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y ) + 1.0/1.6180339887);
|
|
#endif
|
|
}
|
|
float interleaved_gradientNoise(){
|
|
vec2 coord = gl_FragCoord.xy;
|
|
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
|
return noise;
|
|
}
|
|
float R2_dither(){
|
|
vec2 coord = gl_FragCoord.xy ;
|
|
|
|
#ifdef TAA
|
|
coord += (frameCounter%40000) * 2.0;
|
|
#endif
|
|
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
|
}
|
|
float R2_dither2(){
|
|
vec2 coord = gl_FragCoord.xy ;
|
|
|
|
#ifdef TAA
|
|
coord += (frameCounter*8)%40000;
|
|
#endif
|
|
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
|
}
|
|
float blueNoise(){
|
|
#ifdef TAA
|
|
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
|
#else
|
|
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887);
|
|
#endif
|
|
}
|
|
vec4 blueNoise(vec2 coord){
|
|
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
|
|
}
|
|
|
|
// vec3 toShadowSpaceProjected(vec3 feetPlayerPos){
|
|
|
|
// mat4 DH_shadowProjection = DH_shadowProjectionTweak(shadowProjection);
|
|
|
|
// feetPlayerPos = mat3(gbufferModelViewInverse) * feetPlayerPos + gbufferModelViewInverse[3].xyz;
|
|
// feetPlayerPos = mat3(shadowModelView) * feetPlayerPos + shadowModelView[3].xyz;
|
|
// feetPlayerPos = diagonal3_old(DH_shadowProjection) * feetPlayerPos + DH_shadowProjection[3].xyz;
|
|
|
|
// return feetPlayerPos;
|
|
// }
|
|
|
|
vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0)
|
|
{
|
|
float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb)));
|
|
float angle = alpha * (nbRot * 6.28) + spinAngle*6.28;
|
|
|
|
float ssR = alpha;
|
|
float sin_v, cos_v;
|
|
|
|
sin_v = sin(angle);
|
|
cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v)*ssR;
|
|
}
|
|
vec2 tapLocation_simple(
|
|
int samples, int totalSamples, float rotation, float rng
|
|
){
|
|
const float PI = 3.141592653589793238462643383279502884197169;
|
|
float alpha = float(samples + rng) * (1.0 / float(totalSamples));
|
|
float angle = alpha * (rotation * PI);
|
|
|
|
float sin_v = sin(angle);
|
|
float cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v) * sqrt(alpha);
|
|
}
|
|
|
|
vec2 CleanSample(
|
|
int samples, float totalSamples, float noise
|
|
){
|
|
|
|
// this will be used to make 1 full rotation of the spiral. the mulitplication is so it does nearly a single rotation, instead of going past where it started
|
|
float variance = noise * 0.897;
|
|
|
|
// for every sample input, it will have variance applied to it.
|
|
float variedSamples = float(samples) + variance;
|
|
|
|
// for every sample, the sample position must change its distance from the origin.
|
|
// otherwise, you will just have a circle.
|
|
float spiralShape = sqrt(variedSamples / (totalSamples + variance));
|
|
|
|
float shape = 2.26; // this is very important. 2.26 is very specific
|
|
float theta = variedSamples * (PI * shape);
|
|
|
|
float x = cos(theta) * spiralShape;
|
|
float y = sin(theta) * spiralShape;
|
|
|
|
return vec2(x, y);
|
|
}
|
|
vec3 viewToWorld(vec3 viewPos) {
|
|
vec4 pos;
|
|
pos.xyz = viewPos;
|
|
pos.w = 0.0;
|
|
pos = gbufferModelViewInverse * pos;
|
|
return pos.xyz;
|
|
}
|
|
vec3 worldToView(vec3 worldPos) {
|
|
vec4 pos = vec4(worldPos, 0.0);
|
|
pos = gbufferModelView * pos;
|
|
return pos.xyz;
|
|
}
|
|
float swapperlinZ(float depth, float _near, float _far) {
|
|
return (2.0 * _near) / (_far + _near - depth * (_far - _near));
|
|
// l = (2*n)/(f+n-d(f-n))
|
|
// f+n-d(f-n) = 2n/l
|
|
// -d(f-n) = ((2n/l)-f-n)
|
|
// d = -((2n/l)-f-n)/(f-n)
|
|
|
|
}
|
|
|
|
vec2 SSRT_Shadows(vec3 viewPos, bool depthCheck, vec3 lightDir, float noise, bool isSSS, bool hand){
|
|
|
|
|
|
float handSwitch = hand ? 1.0 : 0.0;
|
|
|
|
float steps = 16.0;
|
|
float Shadow = 1.0;
|
|
float SSS = 0.0;
|
|
|
|
float _near = near; float _far = far*4.0;
|
|
|
|
if (depthCheck) {
|
|
_near = dhNearPlane;
|
|
_far = dhFarPlane;
|
|
}
|
|
|
|
vec3 worldpos = mat3(gbufferModelViewInverse) * viewPos ;
|
|
float dist = 1.0 + length(worldpos)/(_far/2.0); // step length as distance increases
|
|
vec3 clipPosition = toClipSpace3_DH(viewPos, depthCheck);
|
|
|
|
//prevents the ray from going behind the camera
|
|
float rayLength = ((viewPos.z + lightDir.z * _far*sqrt(3.)) > -_near) ?
|
|
(-_near -viewPos.z) / lightDir.z : _far*sqrt(3.);
|
|
|
|
vec3 direction = toClipSpace3_DH(viewPos + lightDir*rayLength, depthCheck) - clipPosition; //convert to clip space
|
|
direction.xyz = direction.xyz / max(abs(direction.x)/texelSize.x, abs(direction.y)/texelSize.y); //fixed step size
|
|
|
|
float Stepmult = depthCheck ? (isSSS ? 1.0 : 6.0) : (isSSS ? 1.0 : 3.0);
|
|
|
|
vec3 rayDir = direction * Stepmult * vec3(RENDER_SCALE,1.0) ;
|
|
|
|
vec3 screenPos = clipPosition * vec3(RENDER_SCALE,1.0) + rayDir * noise;
|
|
|
|
float minZ = screenPos.z;
|
|
float maxZ = screenPos.z;
|
|
|
|
for (int i = 0; i < int(steps); i++) {
|
|
|
|
float samplePos = convertHandDepth_2(texture2D(depthtex1, screenPos.xy).x, hand);
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
if(depthCheck) samplePos = texture2D(dhDepthTex1, screenPos.xy).x;
|
|
#endif
|
|
|
|
if(samplePos < screenPos.z && (samplePos <= max(minZ,maxZ) && samplePos >= min(minZ,maxZ))){
|
|
|
|
vec2 linearZ = vec2(swapperlinZ(screenPos.z, _near, _far), swapperlinZ(samplePos, _near, _far));
|
|
float calcthreshold = abs(linearZ.x - linearZ.y) / linearZ.x;
|
|
|
|
if (calcthreshold < 0.035) Shadow = 0.0;
|
|
|
|
SSS += 1.0/steps;
|
|
}
|
|
|
|
minZ = maxZ - (isSSS ? 1.0 : 0.0001) / swapperlinZ(samplePos, _near, _far);
|
|
maxZ += rayDir.z;
|
|
|
|
screenPos += rayDir;
|
|
}
|
|
return vec2(Shadow, SSS);
|
|
}
|
|
|
|
|
|
void Emission(
|
|
inout vec3 Lighting,
|
|
vec3 Albedo,
|
|
float Emission,
|
|
float exposure
|
|
){
|
|
// float autoBrightnessAdjust = mix(5.0, 100.0, clamp(exp(-10.0*exposure),0.0,1.0));
|
|
if( Emission < 254.5/255.0) Lighting = mix(Lighting, Albedo * 5.0 * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why
|
|
// if( Emission < 254.5/255.0 ) Lighting += (Albedo * Emissive_Brightness) * pow(Emission, Emissive_Curve);
|
|
}
|
|
|
|
#include "/lib/indirect_lighting_effects.glsl"
|
|
#include "/lib/PhotonGTAO.glsl"
|
|
|
|
vec4 BilateralUpscale(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){
|
|
|
|
const ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
|
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION) * scaling;
|
|
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
|
|
|
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
|
|
|
ivec2 getRadius[4] = ivec2[](
|
|
ivec2(-2,-2),
|
|
ivec2(-2, 0),
|
|
ivec2( 0, 0),
|
|
ivec2( 0,-2)
|
|
);
|
|
|
|
float diffThreshold = zMults.x;
|
|
|
|
vec4 RESULT = vec4(0.0);
|
|
float SUM = 0.0;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
ivec2 radius = getRadius[i];
|
|
|
|
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
|
|
|
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
|
|
|
RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES;
|
|
|
|
SUM += EDGES;
|
|
}
|
|
// return vec4(0,0,0,1) * SUM;
|
|
return RESULT / SUM;
|
|
}
|
|
|
|
vec4 BilateralUpscale_DH(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){
|
|
ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
|
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION) * scaling;
|
|
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
|
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
|
|
|
ivec2 getRadius[4] = ivec2[](
|
|
ivec2(-2,-2),
|
|
ivec2(-2, 0),
|
|
ivec2( 0, 0),
|
|
ivec2( 0,-2)
|
|
// ivec2(-1,-1),
|
|
// ivec2( 1, 1),
|
|
// ivec2(-1, 1),
|
|
// ivec2( 1,-1)
|
|
);
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float diffThreshold = 0.01;
|
|
#else
|
|
float diffThreshold = zMults.x;
|
|
#endif
|
|
|
|
vec4 RESULT = vec4(0.0);
|
|
float SUM = 0.0;
|
|
|
|
RESULT += texelFetch2D(tex, posColor + pos, 0);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
ivec2 radius = getRadius[i] ;
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0);
|
|
#else
|
|
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
|
#endif
|
|
|
|
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
|
|
|
RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES;
|
|
|
|
SUM += EDGES;
|
|
}
|
|
// return vec4(1) * SUM;
|
|
return RESULT / SUM;
|
|
|
|
}
|
|
|
|
void BilateralUpscale_REUSE_Z(sampler2D tex1, sampler2D tex2, sampler2D depth, vec2 coord, float referenceDepth, inout vec2 ambientEffects, inout vec3 filteredShadow, bool hand){
|
|
ivec2 scaling = ivec2(1.0);
|
|
ivec2 posDepth = ivec2(coord) * scaling;
|
|
ivec2 posColor = ivec2(coord);
|
|
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
|
|
|
ivec2 getRadius[4] = ivec2[](
|
|
ivec2(-1,-1),
|
|
ivec2( 1,-1),
|
|
ivec2( 1, 1),
|
|
ivec2(-1, 1)
|
|
// ivec2( 0, 1),
|
|
// ivec2( 0,-1),
|
|
// ivec2(-1, 0),
|
|
// ivec2( 1, 0)
|
|
);
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float diffThreshold = 0.0005;
|
|
#else
|
|
float diffThreshold = 0.005;
|
|
#endif
|
|
|
|
vec3 shadow_RESULT = vec3(0.0);
|
|
vec2 ssao_RESULT = vec2(0.0);
|
|
float SUM = 1.0;
|
|
|
|
#ifdef LIGHTING_EFFECTS_BLUR_FILTER
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
ivec2 radius = getRadius[i];
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0);
|
|
#else
|
|
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
|
#endif
|
|
|
|
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
|
|
|
#ifdef Variable_Penumbra_Shadows
|
|
shadow_RESULT += texelFetch2D(tex1, posColor + radius + pos, 0).rgb * EDGES;
|
|
#endif
|
|
|
|
#if indirect_effect == 1
|
|
ssao_RESULT += texelFetch2D(tex2, posColor + radius + pos, 0).rg * EDGES;
|
|
#endif
|
|
|
|
SUM += EDGES;
|
|
}
|
|
#endif
|
|
|
|
#ifdef Variable_Penumbra_Shadows
|
|
shadow_RESULT += texture2D(tex1, gl_FragCoord.xy*texelSize).rgb;
|
|
filteredShadow = shadow_RESULT/SUM;
|
|
#endif
|
|
|
|
#if indirect_effect == 1
|
|
ssao_RESULT += texture2D(tex2, gl_FragCoord.xy*texelSize).rg;
|
|
ambientEffects = ssao_RESULT/SUM;
|
|
#endif
|
|
}
|
|
|
|
vec4 BilateralUpscale_VLFOG(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){
|
|
ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
|
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION) * scaling;
|
|
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
|
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
|
|
|
ivec2 getRadius[5] = ivec2[](
|
|
ivec2(-1,-1),
|
|
ivec2( 1, 1),
|
|
ivec2(-1, 1),
|
|
ivec2( 1,-1),
|
|
ivec2( 0, 0)
|
|
);
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float diffThreshold = 0.01;
|
|
#else
|
|
float diffThreshold = zMults.x;
|
|
#endif
|
|
|
|
vec4 RESULT = vec4(0.0);
|
|
float SUM = 0.0;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
ivec2 radius = getRadius[i];
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0);
|
|
#else
|
|
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
|
#endif
|
|
|
|
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
|
|
|
RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES;
|
|
|
|
SUM += EDGES;
|
|
}
|
|
|
|
return RESULT / SUM;
|
|
}
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
float ComputeShadowMap(in vec3 projectedShadowPosition, float distortFactor, float noise, float shadowBlockerDepth, float NdotL, float maxDistFade, inout vec3 directLightColor, inout float FUNNYSHADOW, bool isSSS){
|
|
|
|
if(maxDistFade <= 0.0) return 1.0;
|
|
float backface = NdotL <= 0.0 ? 1.0 : 0.0;
|
|
|
|
float shadowmap = 0.0;
|
|
vec3 translucentTint = vec3(0.0);
|
|
|
|
#ifdef BASIC_SHADOW_FILTER
|
|
int samples = SHADOW_FILTER_SAMPLE_COUNT;
|
|
float rdMul = shadowBlockerDepth*distortFactor*d0*k/shadowMapResolution;
|
|
|
|
for(int i = 0; i < samples; i++){
|
|
// vec2 offsetS = tapLocation_simple(i, 7, 9, noise) * 0.5;
|
|
vec2 offsetS = CleanSample(i, samples - 1, noise) * 0.3;
|
|
projectedShadowPosition.xy += rdMul*offsetS;
|
|
#else
|
|
int samples = 1;
|
|
#endif
|
|
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
// determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth
|
|
float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z*0.6)*2.0,0.0,1.0),2.0);
|
|
|
|
// get opaque shadow data to get opaque data from translucent shadows.
|
|
float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x;
|
|
shadowmap += max(opaqueShadow, shadowDepthDiff);
|
|
|
|
// get translucent shadow data
|
|
vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy);
|
|
|
|
// this curve simply looked the nicest. it has no other meaning.
|
|
float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2);
|
|
|
|
FUNNYSHADOW = shadowAlpha;
|
|
|
|
// normalize the color to remove luminance, and keep the hue. remove all opaque color.
|
|
// mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster.
|
|
translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * max(shadowAlpha, backface * (1.0 - shadowDepthDiff));
|
|
|
|
float translucentMask = 1 - max(shadowDepthDiff-opaqueShadow, 0);
|
|
// make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0
|
|
translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff);
|
|
#else
|
|
shadowmap += shadow2D(shadow, projectedShadowPosition).x;
|
|
#endif
|
|
#ifdef BASIC_SHADOW_FILTER
|
|
}
|
|
#endif
|
|
|
|
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
// tint the lightsource color with the translucent shadow color
|
|
directLightColor *= mix(vec3(1.0), translucentTint.rgb / samples, maxDistFade);
|
|
#endif
|
|
|
|
// return maxDistFade;
|
|
return shadowmap / samples;
|
|
// return mix(1.0, shadowmap / samples, maxDistFade);
|
|
|
|
}
|
|
|
|
|
|
vec3 ComputeShadowMap_COLOR(in vec3 projectedShadowPosition, float distortFactor, float noise, float shadowBlockerDepth, float NdotL, float maxDistFade, vec3 directLightColor, inout float FUNNYSHADOW, inout vec3 tintedSunlight, bool isSSS){
|
|
|
|
// if(maxDistFade <= 0.0) return 1.0;
|
|
float backface = NdotL <= 0.0 ? 1.0 : 0.0;
|
|
|
|
vec3 shadowColor = vec3(0.0);
|
|
vec3 translucentTint = vec3(0.0);
|
|
|
|
#ifdef BASIC_SHADOW_FILTER
|
|
int samples = SHADOW_FILTER_SAMPLE_COUNT;
|
|
float rdMul = (shadowBlockerDepth*distortFactor*d0*k/shadowMapResolution) * 0.3;
|
|
|
|
for(int i = 0; i < samples; i++){
|
|
vec2 offsetS = CleanSample(i, samples - 1, noise) * rdMul;
|
|
projectedShadowPosition.xy += offsetS;
|
|
#else
|
|
int samples = 1;
|
|
#endif
|
|
|
|
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x;
|
|
float opaqueShadowT = shadow2D(shadowtex1, projectedShadowPosition).x;
|
|
vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy);
|
|
|
|
float shadowAlpha = pow(1.0-pow(1.0-translucentShadow.a,2.0),5.0);
|
|
translucentShadow.rgb = normalize(translucentShadow.rgb*translucentShadow.rgb + 0.0001) * (1.0-shadowAlpha);
|
|
|
|
// translucentTint += mix(translucentShadow.rgb * mix(opaqueShadowT, 1.0, backface), vec3(1.0), max(opaqueShadow, backface * (shadowAlpha < 1.0 ? 0.0 : 1.0)));
|
|
|
|
shadowColor += directLightColor * mix(translucentShadow.rgb * opaqueShadowT, vec3(1.0), opaqueShadow);
|
|
|
|
translucentTint += mix(translucentShadow.rgb, vec3(1.0), max(opaqueShadow, backface * (shadowAlpha < 1.0 ? 0.0 : 1.0)));
|
|
FUNNYSHADOW += ((1.0-shadowAlpha) * opaqueShadowT)/samples;
|
|
#else
|
|
shadowColor += directLightColor * shadow2D(shadow, projectedShadowPosition).x;
|
|
#endif
|
|
|
|
#ifdef BASIC_SHADOW_FILTER
|
|
}
|
|
#endif
|
|
|
|
// #ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
// directLightColor *= mix(vec3(1.0), translucentTint.rgb / samples, maxDistFade);
|
|
tintedSunlight *= translucentTint.rgb / samples;
|
|
// #endif
|
|
|
|
return mix(directLightColor, shadowColor.rgb / samples, maxDistFade);
|
|
// return 1.0;
|
|
// return mix(1.0, shadow / samples, maxDistFade);
|
|
}
|
|
|
|
#endif
|
|
|
|
float CustomPhase(float LightPos){
|
|
|
|
float PhaseCurve = 1.0 - LightPos;
|
|
float Final = exp2(sqrt(PhaseCurve) * -25.0);
|
|
Final += exp(PhaseCurve * -10.0)*0.5;
|
|
|
|
return Final;
|
|
}
|
|
|
|
vec3 SubsurfaceScattering_sun(vec3 albedo, float Scattering, float Density, float lightPos, float shadows, float distantSSS){
|
|
|
|
// Scattering *= sss_density_multiplier;
|
|
|
|
// float density = 0.0001 + Density*2.0;
|
|
|
|
// float scatterDepth = max(1.0 - Scattering/density,0.0);
|
|
// scatterDepth = exp((1.0-scatterDepth) * -7.0);
|
|
|
|
// scatterDepth = mix(exp(Scattering * -10.0), scatterDepth, distantSSS);
|
|
|
|
// // this is for SSS when there is no shadow blocker depth
|
|
// #if defined BASIC_SHADOW_FILTER && defined Variable_Penumbra_Shadows
|
|
// scatterDepth = max(scatterDepth, pow(shadows, 0.5 + (1.0-Density) * 2.0) );
|
|
// #else
|
|
// scatterDepth = exp(-7.0 * pow(1.0-shadows,3.0))*min(2.0-sss_density_multiplier,1.0);
|
|
// #endif
|
|
|
|
// // PBR at its finest :clueless:
|
|
// vec3 absorbColor = exp(max(luma(albedo) - albedo*vec3(1.0,1.1,1.2), 0.0) * -(20.0 - 19*scatterDepth) * sss_absorbance_multiplier);
|
|
|
|
// vec3 scatter = scatterDepth * absorbColor * pow(Density, LabSSS_Curve);
|
|
|
|
// scatter *= 1.0 + CustomPhase(lightPos)*6.0; // ~10x brighter at the peak
|
|
|
|
// return scatter;
|
|
|
|
|
|
// Scattering *= sss_density_multiplier;
|
|
|
|
float density = 1e-6 + Density * 2.0;
|
|
|
|
// float scatterDepth = Scattering;//max(1.0 - Scattering/density,0.0);
|
|
|
|
float scatterDepth = max(1.0 - Scattering/density, 0.0);
|
|
scatterDepth *= exp(-7.0 * (1.0-scatterDepth));
|
|
|
|
vec3 absorbColor = exp(max(luma(albedo) - albedo*vec3(1.0,1.1,1.2), 0.0) * -(20.0 - 19*scatterDepth) * sss_absorbance_multiplier);
|
|
|
|
scatterDepth = mix(exp(Scattering * -10.0), scatterDepth, distantSSS);
|
|
|
|
vec3 scatter = scatterDepth * absorbColor * pow(Density, LabSSS_Curve);// * vec3(1.0);
|
|
|
|
|
|
scatter *= 1.0 + CustomPhase(lightPos)*6.0; // ~10x brighter at the peak
|
|
|
|
return scatter;
|
|
}
|
|
|
|
vec3 SubsurfaceScattering_sky(vec3 albedo, float Scattering, float Density){
|
|
|
|
// Scattering *= sss_density_multiplier;
|
|
|
|
float scatterDepth = 1.0 - pow(Scattering, 0.5 + Density * 2.5);
|
|
// float scatterDepth = 1.0 - Scattering;
|
|
|
|
// PBR at its finest :clueless:
|
|
// vec3 absorbColor = exp(max(luma(albedo) - albedo*vec3(1.0,1.1,1.2), 0.0) * -20.0 * sss_absorbance_multiplier);
|
|
|
|
// vec3 absorbColor = exp(max(luma(albedo) - albedo*vec3(1.0,1.0,1.2), 0.0) * -20.0);
|
|
vec3 absorbColor = vec3(1.0) * exp(-(15.0 - 10.0*scatterDepth) * sss_absorbance_multiplier * 0.01);
|
|
|
|
vec3 scatter = scatterDepth * absorbColor * pow(Density, LabSSS_Curve);
|
|
|
|
return scatter;
|
|
}
|
|
|
|
|
|
|
|
vec3 blurredAlbedo( float noise, float lineardistance){
|
|
|
|
int samples = 7;
|
|
vec3 blurredColor = vec3(0.0);
|
|
|
|
for (int i = 0; i < samples; i++) {
|
|
|
|
vec2 offsets = CleanSample(i, samples - 1, noise)*0.02 / lineardistance;
|
|
|
|
ivec2 offsetUV = ivec2(gl_FragCoord.xy + offsets*vec2(viewWidth, viewHeight*aspectRatio)*RENDER_SCALE);
|
|
|
|
vec3 SAMPLE = texelFetch2D(colortex1, offsetUV, 0).xyz;
|
|
|
|
blurredColor += toLinear(vec3(decodeVec2(SAMPLE.x).x, decodeVec2(SAMPLE.y).x, decodeVec2(SAMPLE.z).x));
|
|
|
|
}
|
|
|
|
return blurredColor/samples;
|
|
}
|
|
uniform float wetnessAmount;
|
|
uniform float wetness;
|
|
|
|
void applyPuddles(
|
|
in vec3 worldPos, in vec3 flatNormals, in float lightmap, in bool isWater, inout vec3 albedo, inout vec3 normals, inout float roughness, inout float f0
|
|
){
|
|
|
|
float halfWet = min(wetnessAmount,1.0);
|
|
float fullWet = clamp(wetnessAmount - 2.0,0.0,1.0);
|
|
// halfWet = 1.0;
|
|
// fullWet = 0.0;
|
|
float noise = texture2D(noisetex, worldPos.xz * 0.02).b;
|
|
|
|
float puddles = max(halfWet - noise,0.0);
|
|
puddles = clamp(halfWet - exp(-20.0 * puddles*puddles*puddles*puddles*puddles),0.0,1.0);
|
|
// puddles *= halfWet;
|
|
|
|
float lightmapMax = min(max(lightmap - 0.9,0.0) * 10.0,1.0);
|
|
float lightmapMin = min(max(lightmap - 0.8,0.0) * 5.0,1.0);
|
|
lightmap = clamp(lightmapMax + noise*lightmapMin*2.0,0.0,1.0);
|
|
|
|
lightmap = pow(1.0-pow(1.0-lightmap,3.0),2.0);
|
|
|
|
float wetnessStages = mix(puddles, 1.0, fullWet) * lightmap;
|
|
|
|
// if(isWater || (!isWater && isEyeInWater == 1)) wetnessStages = 1.0;
|
|
|
|
normals = mix(normals, flatNormals, puddles * lightmap * clamp(flatNormals.y,0.0,1.0));
|
|
roughness = mix(roughness, 1.0, wetnessStages);
|
|
|
|
if(f0 < 229.5/255.0 ) albedo = pow(albedo * (1.0 - 0.08*wetnessStages), vec3(1.0 + 0.7*wetnessStages));
|
|
|
|
}
|
|
|
|
vec2 smoothfilterUV(in vec2 uv)
|
|
{
|
|
vec2 textureResolution = vec2(viewWidth,viewHeight);
|
|
uv = uv*textureResolution + 0.5;
|
|
vec2 iuv = floor( uv );
|
|
vec2 fuv = fract( uv );
|
|
|
|
#ifndef SMOOTHESTSTEP_INTERPOLATION
|
|
uv = iuv + (fuv*fuv)*(3.0-2.0*fuv);
|
|
#endif
|
|
#ifdef SMOOTHESTSTEP_INTERPOLATION
|
|
uv = iuv + fuv*fuv*fuv*(fuv*(fuv*6.0-15.0)+10.0);
|
|
#endif
|
|
|
|
uv = (uv - 0.5)/textureResolution;
|
|
|
|
return uv;
|
|
}
|
|
|
|
void main() {
|
|
|
|
vec3 DEBUG = vec3(1.0);
|
|
|
|
////// --------------- SETUP STUFF --------------- //////
|
|
vec2 texcoord = (gl_FragCoord.xy*texelSize);
|
|
|
|
float noise_2 = R2_dither();
|
|
vec2 bnoise = blueNoise(gl_FragCoord.xy ).rg;
|
|
// #ifdef TAA
|
|
int seed = (frameCounter*5)%40000;
|
|
vec2 r2_sequence = R2_samples(seed).xy;
|
|
vec2 BN = fract(r2_sequence + bnoise);
|
|
float noise = BN.y;
|
|
// #else
|
|
// float noise = fract(R2_samples(3).y + bnoise.y);
|
|
// #endif
|
|
|
|
float z0 = texture2D(depthtex0,texcoord).x;
|
|
float z = texture2D(depthtex1,texcoord).x;
|
|
float swappedDepth = z;
|
|
|
|
bool isDHrange = z >= 1.0;
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float DH_mixedLinearZ = sqrt(texture2D(colortex12,texcoord).a/65000.0);
|
|
float DH_depth0 = texture2D(dhDepthTex,texcoord).x;
|
|
float DH_depth1 = texture2D(dhDepthTex1,texcoord).x;
|
|
|
|
float depthOpaque = z;
|
|
float depthOpaqueL = linearizeDepthFast(depthOpaque, near, farPlane);
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float dhDepthOpaque = DH_depth1;
|
|
float dhDepthOpaqueL = linearizeDepthFast(dhDepthOpaque, dhNearPlane, dhFarPlane);
|
|
|
|
if (depthOpaque >= 1.0 || (dhDepthOpaqueL < depthOpaqueL && dhDepthOpaque > 0.0)){
|
|
depthOpaque = dhDepthOpaque;
|
|
depthOpaqueL = dhDepthOpaqueL;
|
|
}
|
|
#endif
|
|
|
|
swappedDepth = depthOpaque;
|
|
#else
|
|
float DH_depth0 = 0.0;
|
|
float DH_depth1 = 0.0;
|
|
#endif
|
|
|
|
|
|
|
|
|
|
////// --------------- UNPACK OPAQUE GBUFFERS --------------- //////
|
|
|
|
vec4 data = texelFetch2D(colortex1, ivec2(gl_FragCoord.xy), 0);
|
|
|
|
vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); // albedo, masks
|
|
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); // normals, lightmaps
|
|
// vec4 dataUnpacked2 = vec4(decodeVec2(data.z),decodeVec2(data.w));
|
|
|
|
vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x));
|
|
vec3 normal = decode(dataUnpacked0.yw);
|
|
vec2 lightmap = dataUnpacked1.yz;
|
|
|
|
lightmap.xy = min(max(lightmap.xy - 0.05,0.0)*1.06,1.0); // small offset to hide flickering from precision error in the encoding/decoding on values close to 1.0 or 0.0
|
|
|
|
#if !defined OVERWORLD_SHADER
|
|
lightmap.y = 1.0;
|
|
#endif
|
|
|
|
// lightmap.y = 0.0;
|
|
// if(isDHrange) lightmap.y = pow(lightmap.y,25);
|
|
// if(isEyeInWater == 1) lightmap.y = max(lightmap.y, 0.75);
|
|
|
|
////// --------------- UNPACK MISC --------------- //////
|
|
|
|
vec4 SpecularTex = texelFetch2D(colortex8, ivec2(gl_FragCoord.xy), 0);
|
|
float LabSSS = clamp((-65.0 + SpecularTex.z * 255.0) / 190.0 ,0.0,1.0);
|
|
|
|
vec4 normalAndAO = texture2D(colortex15,texcoord);
|
|
vec3 FlatNormals = normalize(normalAndAO.rgb * 2.0 - 1.0);
|
|
vec3 slopednormal = normal;
|
|
|
|
float vanilla_AO = z < 1.0 ? clamp(normalAndAO.a,0,1) : 0.0;
|
|
normalAndAO.a = clamp(pow(normalAndAO.a*5,4),0,1);
|
|
|
|
if(isDHrange){
|
|
FlatNormals = normal;
|
|
slopednormal = normal;
|
|
}
|
|
|
|
|
|
////// --------------- MASKS/BOOLEANS --------------- //////
|
|
// 1.0-0.8 ???
|
|
// 0.75 = hand mask
|
|
// 0.60 = grass mask
|
|
// 0.55 = leaf mask (for ssao-sss)
|
|
// 0.50 = lightning bolt mask
|
|
// 0.45 = entity mask
|
|
float opaqueMasks = dataUnpacked1.w;
|
|
// 1.0 = water mask
|
|
// 0.9 = entity mask
|
|
// 0.8 = reflective entities
|
|
// 0.7 = reflective blocks
|
|
float translucentMasks = texture2D(colortex7, texcoord).a;
|
|
|
|
bool isWater = translucentMasks > 0.99;
|
|
// bool isReflectiveEntity = abs(translucentMasks - 0.8) < 0.01;
|
|
// bool isReflective = abs(translucentMasks - 0.7) < 0.01 || isWater || isReflectiveEntity;
|
|
// bool isEntity = abs(translucentMasks - 0.9) < 0.01 || isReflectiveEntity;
|
|
|
|
bool lightningBolt = abs(opaqueMasks-0.5) <0.01;
|
|
bool isLeaf = abs(opaqueMasks-0.55) <0.01;
|
|
bool entities = abs(opaqueMasks-0.45) < 0.01;
|
|
bool isGrass = abs(opaqueMasks-0.60) < 0.01;
|
|
bool hand = abs(opaqueMasks-0.75) < 0.01 && z < 1.0;
|
|
// bool blocklights = abs(opaqueMasks-0.8) <0.01;
|
|
|
|
|
|
if(hand){
|
|
convertHandDepth(z);
|
|
convertHandDepth(z0);
|
|
}
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
vec3 viewPos = toScreenSpace_DH(texcoord/RENDER_SCALE - TAA_Offset*texelSize*0.5, z, DH_depth1);
|
|
#else
|
|
vec3 viewPos = toScreenSpace(vec3(texcoord/RENDER_SCALE - TAA_Offset*texelSize*0.5, z));
|
|
#endif
|
|
|
|
vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos;
|
|
vec3 feetPlayerPos_normalized = normVec(feetPlayerPos);
|
|
|
|
#ifdef POM
|
|
#ifdef Horrible_slope_normals
|
|
vec3 ApproximatedFlatNormal = normalize(cross(dFdx(feetPlayerPos), dFdy(feetPlayerPos))); // it uses depth that has POM written to it.
|
|
slopednormal = normalize(clamp(normal, ApproximatedFlatNormal*2.0 - 1.0, ApproximatedFlatNormal*2.0 + 1.0) );
|
|
#endif
|
|
#endif
|
|
////// --------------- COLORS --------------- //////
|
|
|
|
|
|
float dirtAmount = Dirt_Amount;
|
|
// float dirtAmount = Dirt_Amount + 0.01;
|
|
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
|
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
|
vec3 totEpsilon = dirtEpsilon * dirtAmount + waterEpsilon;
|
|
// vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
|
|
|
|
vec3 Absorbtion = vec3(1.0);
|
|
vec3 AmbientLightColor = vec3(0.0);
|
|
vec3 MinimumLightColor = vec3(1.0);
|
|
vec3 Indirect_lighting = vec3(0.0);
|
|
vec3 Indirect_SSS = vec3(0.0);
|
|
vec2 SSAO_SSS = vec2(1.0);
|
|
|
|
vec3 DirectLightColor = vec3(0.0);
|
|
vec3 Direct_lighting = vec3(0.0);
|
|
vec3 Direct_SSS = vec3(0.0);
|
|
float cloudShadow = 1.0;
|
|
float Shadows = 1.0;
|
|
|
|
vec3 shadowColor = vec3(1.0);
|
|
vec3 SSSColor = vec3(1.0);
|
|
vec3 filteredShadow = vec3(Min_Shadow_Filter_Radius,1.0,0.0);
|
|
|
|
float NdotL = 1.0;
|
|
float lightLeakFix = clamp(pow(eyeBrightnessSmooth.y/240. + lightmap.y,2.0) ,0.0,1.0);
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
DirectLightColor = lightCol.rgb / 2400.0;//mix(900.0, 2400.0, lightmap.y);
|
|
AmbientLightColor = averageSkyCol_Clouds / 900.0;
|
|
shadowColor = DirectLightColor;
|
|
|
|
// #ifdef PER_BIOME_ENVIRONMENT
|
|
// // BiomeSunlightColor(DirectLightColor);
|
|
// vec3 biomeDirect = DirectLightColor;
|
|
// vec3 biomeIndirect = AmbientLightColor;
|
|
// float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect);
|
|
|
|
// float maxDistance = inBiome * min(max(1.0 - length(feetPlayerPos)/(32*8),0.0)*2.0,1.0);
|
|
// DirectLightColor = mix(DirectLightColor, biomeDirect, maxDistance);
|
|
// #endif
|
|
|
|
bool inShadowmapBounds = false;
|
|
#endif
|
|
|
|
MinimumLightColor = MinimumLightColor + 0.7 * MinimumLightColor * dot(slopednormal, feetPlayerPos_normalized);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////// START DRAW ////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////// UNDER WATER SHADING ////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
if ((isEyeInWater == 0 && isWater) || (isEyeInWater == 1 && !isWater)){
|
|
|
|
feetPlayerPos += gbufferModelViewInverse[3].xyz;
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
vec3 playerPos0 = mat3(gbufferModelViewInverse) * toScreenSpace_DH(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5, z0, DH_depth0) + gbufferModelViewInverse[3].xyz;
|
|
#else
|
|
vec3 playerPos0 = mat3(gbufferModelViewInverse) * toScreenSpace(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5,z0)) + gbufferModelViewInverse[3].xyz;
|
|
#endif
|
|
|
|
float Vdiff = distance(feetPlayerPos, playerPos0);
|
|
float estimatedDepth = Vdiff * abs(feetPlayerPos_normalized.y);// assuming water plane
|
|
|
|
float viewerWaterDepth = Vdiff * (1.0 - clamp(exp(-Vdiff),0.0,1.0));
|
|
|
|
// force the absorbance to start way closer to the water surface in low light areas, so the water is visible in caves and such.
|
|
#if MINIMUM_WATER_ABSORBANCE > -1
|
|
float minimumAbsorbance = MINIMUM_WATER_ABSORBANCE*0.1;
|
|
#else
|
|
float minimumAbsorbance = (1.0 - lightLeakFix)*0.75;
|
|
#endif
|
|
|
|
viewerWaterDepth += max(estimatedDepth - 1.0, minimumAbsorbance);
|
|
|
|
Absorbtion = exp( -2.0 * totEpsilon * viewerWaterDepth);
|
|
|
|
// brighten up the fully absorbed parts of water when night vision activates.
|
|
// if( nightVision > 0.0 ) Absorbtion += exp( -50.0 * totEpsilon) * 50.0 * 7.0 * nightVision;
|
|
if( nightVision > 0.0 ) Absorbtion += exp( -30.0 * totEpsilon) * 10.0 * nightVision * 10.0;
|
|
|
|
if (isEyeInWater == 1){
|
|
estimatedDepth = 1.0;
|
|
viewerWaterDepth = max(0.9-lightmap.y,0.0)*3.0;
|
|
Absorbtion = exp( -2.0 * totEpsilon * viewerWaterDepth);
|
|
|
|
DirectLightColor *= Absorbtion;
|
|
}
|
|
|
|
// apply caustics to the lighting, and make sure they dont look weird
|
|
DirectLightColor *= mix(1.0, waterCaustics(feetPlayerPos + cameraPosition, WsunVec)*WATER_CAUSTICS_BRIGHTNESS + 0.25, clamp(estimatedDepth,0,1));
|
|
}
|
|
|
|
|
|
if (swappedDepth < 1.0) {
|
|
|
|
// idk why this do
|
|
feetPlayerPos += gbufferModelViewInverse[3].xyz;
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////////////////////// FILTER STUFF //////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#if defined DISTANT_HORIZONS && defined DH_AMBIENT_OCCLUSION
|
|
BilateralUpscale_REUSE_Z(colortex3, colortex14, colortex12, gl_FragCoord.xy-1.5, DH_mixedLinearZ, SSAO_SSS, filteredShadow, hand);
|
|
#else
|
|
BilateralUpscale_REUSE_Z(colortex3, colortex14, depthtex0, gl_FragCoord.xy-1.5, ld(z0), SSAO_SSS, filteredShadow, hand);
|
|
#endif
|
|
|
|
float ShadowBlockerDepth = filteredShadow.y;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
///////////////////////////// MAJOR LIGHTSOURCE STUFF ////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
|
|
float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 5.0,1.0);
|
|
|
|
float LightningPhase = 0.0;
|
|
vec3 LightningFlashLighting = Iris_Lightningflash(feetPlayerPos, lightningBoltPosition.xyz, slopednormal, LightningPhase) * pow(lightmap.y,10);
|
|
|
|
NdotL = clamp((-15 + dot(slopednormal, WsunVec)*255.0) / 240.0 ,0.0,1.0);
|
|
|
|
// NdotL = 1;
|
|
float flatNormNdotL = clamp((-15 + dot((FlatNormals), WsunVec)*255.0) / 240.0 ,0.0,1.0);
|
|
|
|
//////////////////////////////// SHADOWMAP ////////////////////////////////
|
|
// setup shadow projection
|
|
vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
|
|
if(!hand) GriAndEminShadowFix(shadowPlayerPos, FlatNormals, vanilla_AO, lightmap.y);
|
|
|
|
vec3 projectedShadowPosition = mat3(shadowModelView) * shadowPlayerPos + shadowModelView[3].xyz;
|
|
projectedShadowPosition = diagonal3_old(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
|
|
|
|
#if OPTIMIZED_SHADOW_DISTANCE > 0
|
|
|
|
float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / (shadowDistance+16.0),0.0)*5.0,1.0));
|
|
float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / shadowDistance,0.0)*5.0,1.0));
|
|
|
|
#else
|
|
vec3 shadowEdgePos = projectedShadowPosition * vec3(0.4,0.4,0.5/6.0) + vec3(0.5,0.5,0.12);
|
|
float fadeLength = max((shadowDistance/256)*30,10.0);
|
|
|
|
vec3 cubicRadius = clamp( min((1.0-shadowEdgePos)*fadeLength, shadowEdgePos*fadeLength),0.0,1.0);
|
|
float shadowmapFade = cubicRadius.x*cubicRadius.y*cubicRadius.z;
|
|
|
|
shadowmapFade = 1.0 - pow(1.0-pow(shadowmapFade,1.5),3.0);
|
|
|
|
float shadowMapFalloff = shadowmapFade;
|
|
float shadowMapFalloff2 = shadowmapFade;
|
|
#endif
|
|
|
|
// shadowMapFalloff = 1.0;
|
|
// shadowMapFalloff2 = 1.0;
|
|
|
|
// un-distort
|
|
#ifdef DISTORT_SHADOWMAP
|
|
float distortFactor = calcDistort(projectedShadowPosition.xy);
|
|
projectedShadowPosition.xy *= distortFactor;
|
|
#else
|
|
float distortFactor = 1.0;
|
|
#endif
|
|
|
|
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5,0.5,0.5) ;
|
|
|
|
float ShadowAlpha = 0.0; // this is for subsurface scattering later.
|
|
vec3 tintedSunlight = DirectLightColor; // this is for subsurface scattering later.
|
|
|
|
shadowColor = ComputeShadowMap_COLOR(projectedShadowPosition, distortFactor, noise_2, filteredShadow.x, flatNormNdotL, shadowMapFalloff, DirectLightColor, ShadowAlpha, tintedSunlight, LabSSS > 0.0);
|
|
|
|
|
|
// transition to fallback lightmap shadow mask.
|
|
shadowColor *= mix(isWater ? lightLeakFix : LM_shadowMapFallback, 1.0, shadowMapFalloff2);
|
|
|
|
// #ifdef OLD_LIGHTLEAK_FIX
|
|
// if (isEyeInWater == 0) Shadows *= lightLeakFix; // light leak fix
|
|
// #endif
|
|
|
|
//////////////////////////////// SUN SSS ////////////////////////////////
|
|
#if SSS_TYPE != 0
|
|
|
|
float sunSSS_density = LabSSS;
|
|
float SSS_shadow = ShadowAlpha;
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / min(shadowDistance, max(far-32.0,32.0)),0.0)*5.0,1.0));
|
|
#endif
|
|
|
|
#ifndef RENDER_ENTITY_SHADOWS
|
|
if(entities) sunSSS_density = 0.0;
|
|
#endif
|
|
|
|
#ifdef SCREENSPACE_CONTACT_SHADOWS
|
|
vec2 SS_directLight = SSRT_Shadows(toScreenSpace_DH(texcoord/RENDER_SCALE, z, DH_depth1), isDHrange, normalize(WsunVec*mat3(gbufferModelViewInverse)), interleaved_gradientNoise_temporal(), sunSSS_density > 0.0 && shadowMapFalloff2 < 1.0, hand);
|
|
|
|
// combine shadowmap with a minumum shadow determined by the screenspace shadows.
|
|
shadowColor *= SS_directLight.r;
|
|
|
|
// combine shadowmap blocker depth with a minumum determined by the screenspace shadows, starting after the shadowmap ends
|
|
ShadowBlockerDepth = mix(SS_directLight.g, ShadowBlockerDepth, shadowMapFalloff2);
|
|
#endif
|
|
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
SSSColor = tintedSunlight;
|
|
#else
|
|
SSSColor = DirectLightColor;
|
|
#endif
|
|
|
|
SSSColor *= SubsurfaceScattering_sun(albedo, ShadowBlockerDepth, sunSSS_density, clamp(dot(feetPlayerPos_normalized, WsunVec),0.0,1.0), SSS_shadow, shadowMapFalloff2);
|
|
|
|
if(isEyeInWater != 1)SSSColor *= lightLeakFix;
|
|
|
|
#ifndef SCREENSPACE_CONTACT_SHADOWS
|
|
SSSColor = mix(vec3(0.0), SSSColor, shadowMapFalloff2);
|
|
#endif
|
|
|
|
#ifdef CLOUDS_SHADOWS
|
|
float cloudShadows = GetCloudShadow(feetPlayerPos.xyz + cameraPosition, WsunVec);
|
|
shadowColor *= cloudShadows;
|
|
SSSColor *= cloudShadow*cloudShadows;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef END_SHADER
|
|
float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0);
|
|
vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds);
|
|
|
|
float lightningflash = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0;
|
|
vec3 lightColors = LightSourceColors(vortexBounds, lightningflash);
|
|
|
|
float end_NdotL = clamp(dot(slopednormal, normalize(-lightPos))*0.5+0.5,0.0,1.0);
|
|
end_NdotL *= end_NdotL;
|
|
|
|
float fogShadow = GetEndFogShadow(feetPlayerPos+cameraPosition, lightPos);
|
|
float endPhase = endFogPhase(lightPos);
|
|
|
|
Direct_lighting += lightColors * endPhase * end_NdotL * fogShadow;
|
|
#endif
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
///////////////////////////// INDIRECT LIGHTING /////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#if defined OVERWORLD_SHADER
|
|
float skylight = 1.0;
|
|
|
|
#if indirect_effect == 0 || indirect_effect == 1 || indirect_effect == 2
|
|
float SkylightDir = (slopednormal / dot(abs(slopednormal),vec3(1.0))).y*1.5;
|
|
if(isGrass) SkylightDir = 1.5;
|
|
|
|
skylight = max(pow((FlatNormals).y*0.5+0.5,0.1) + SkylightDir, 0.2 + (1-lightmap.y)*0.8);
|
|
|
|
#if indirect_effect == 1
|
|
skylight = min(skylight, mix(0.95, 2.5, pow(1-pow(1-SSAO_SSS.x, 0.5),2.0) ));
|
|
#endif
|
|
#endif
|
|
|
|
#if indirect_effect == 3 || indirect_effect == 4
|
|
skylight = 2.5;
|
|
#endif
|
|
|
|
Indirect_lighting += doIndirectLighting(AmbientLightColor * skylight, MinimumLightColor, lightmap.y);
|
|
|
|
#endif
|
|
|
|
#ifdef NETHER_SHADER
|
|
Indirect_lighting = volumetricsFromTex(normalize(normal), colortex4, 6).rgb / 1200.0;
|
|
vec3 up = volumetricsFromTex(vec3(0.0,1.0,0.0), colortex4, 6).rgb / 1200.0;
|
|
|
|
#if indirect_effect == 1
|
|
Indirect_lighting = mix(up, Indirect_lighting, clamp(pow(1.0-pow(1.0-SSAO_SSS.x, 0.5),2.0),0.0,1.0));
|
|
#endif
|
|
|
|
AmbientLightColor = Indirect_lighting;
|
|
#endif
|
|
|
|
#ifdef END_SHADER
|
|
Indirect_lighting = vec3(0.3,0.6,1.0);
|
|
|
|
Indirect_lighting = Indirect_lighting + 0.7*mix(-Indirect_lighting, Indirect_lighting * dot(slopednormal, feetPlayerPos_normalized), clamp(pow(1.0-pow(1.0-SSAO_SSS.x, 0.5),2.0),0.0,1.0));
|
|
Indirect_lighting *= 0.1;
|
|
|
|
Indirect_lighting += lightColors * (endPhase*endPhase) * (1.0-exp(vec3(0.6,2.0,2.0) * -(endPhase*0.01))) /1000.0;
|
|
#endif
|
|
|
|
#ifdef IS_LPV_ENABLED
|
|
vec3 normalOffset = vec3(0.0);
|
|
|
|
if (any(greaterThan(abs(FlatNormals), vec3(1.0e-6))))
|
|
normalOffset = 0.5*(FlatNormals);
|
|
|
|
#if LPV_NORMAL_STRENGTH > 0
|
|
vec3 texNormalOffset = -normalOffset + slopednormal;
|
|
normalOffset = mix(normalOffset, texNormalOffset, (LPV_NORMAL_STRENGTH*0.01));
|
|
#endif
|
|
|
|
vec3 lpvPos = GetLpvPosition(feetPlayerPos) + normalOffset;
|
|
#else
|
|
const vec3 lpvPos = vec3(0.0);
|
|
#endif
|
|
vec3 blockLightColor = doBlockLightLighting( vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, exposure, feetPlayerPos, lpvPos);
|
|
Indirect_lighting += blockLightColor;
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
///////////////////////////// EFFECTS FOR INDIRECT /////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
float SkySSS = 1.0;
|
|
vec3 AO = vec3(1.0);
|
|
|
|
#if indirect_effect == 0
|
|
AO = vec3(pow(1.0 - vanilla_AO*vanilla_AO,5.0));
|
|
Indirect_lighting *= AO;
|
|
#endif
|
|
|
|
#if indirect_effect == 1
|
|
SkySSS = SSAO_SSS.y;
|
|
|
|
float vanillaAO_curve = pow(1.0 - vanilla_AO*vanilla_AO,5.0);
|
|
float SSAO_curve = pow(SSAO_SSS.x,6.0);
|
|
|
|
// use the min of vanilla ao so they dont overdarken eachother
|
|
AO = vec3( min(vanillaAO_curve, SSAO_curve) );
|
|
Indirect_lighting *= AO;
|
|
#endif
|
|
|
|
// // GTAO... this is so dumb but whatevverrr
|
|
#if indirect_effect == 2
|
|
float vanillaAO_curve = pow(1.0 - vanilla_AO*vanilla_AO,5.0);
|
|
|
|
vec2 r2 = fract(R2_samples((frameCounter%40000) + frameCounter*2) + bnoise);
|
|
float GTAO = !hand ? ambient_occlusion(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5, z), viewPos, worldToView(slopednormal), r2) : 1.0;
|
|
|
|
AO = vec3(min(vanillaAO_curve,GTAO));
|
|
|
|
Indirect_lighting *= AO;
|
|
#endif
|
|
|
|
// RTAO and/or SSGI
|
|
#if indirect_effect == 3 || indirect_effect == 4
|
|
if(!hand) Indirect_lighting = ApplySSRT(Indirect_lighting, blockLightColor, MinimumLightColor, viewPos, normal, vec3(bnoise, noise_2), lightmap.y, isGrass, isDHrange);
|
|
#endif
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
///////////////////////// SUB SURFACE SCATTERING ////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
///////////////////////////// SKY SSS /////////////////////////////
|
|
#if defined Ambient_SSS && defined OVERWORLD_SHADER && indirect_effect == 1
|
|
if (!hand){
|
|
vec3 ambientColor = AmbientLightColor * mix(0.2,2.5,lightmap.y*lightmap.y) * ambient_brightness; // x2.5 to match the brightness of upfacing skylight
|
|
|
|
Indirect_SSS = SubsurfaceScattering_sky(albedo, SkySSS, LabSSS);
|
|
Indirect_SSS *= lightmap.y*lightmap.y;//*lightmap.y;
|
|
|
|
// apply to ambient light.
|
|
Indirect_lighting = max(Indirect_lighting, Indirect_SSS * ambientColor * ambientsss_brightness);
|
|
|
|
// #ifdef OVERWORLD_SHADER
|
|
// if(LabSSS > 0.0) Indirect_lighting += (1.0-SkySSS) * LightningPhase * lightningEffect * pow(lightmap.y,10);
|
|
// #endif
|
|
}
|
|
#endif
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
///////////////////////////// FINALIZE /////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
#ifdef SSS_view
|
|
albedo = vec3(1);
|
|
NdotL = 0;
|
|
#endif
|
|
#if defined END_SHADER
|
|
Direct_lighting *= AO;
|
|
#endif
|
|
#ifdef OVERWORLD_SHADER
|
|
// Direct_lighting = max(shadowColor*NdotL, SSSColor);
|
|
#ifdef AO_in_sunlight
|
|
Direct_lighting = shadowColor*NdotL*(AO*0.7+0.3) + SSSColor;
|
|
#else
|
|
Direct_lighting = shadowColor*NdotL + SSSColor;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined OVERWORLD_SHADER && defined DEFERRED_SPECULAR
|
|
if(!hand && !entities) applyPuddles(feetPlayerPos + cameraPosition, FlatNormals, lightmap.y, isWater, albedo, normal, SpecularTex.r, SpecularTex.g);
|
|
#endif
|
|
|
|
vec3 FINAL_COLOR = (Indirect_lighting + Direct_lighting) * albedo;
|
|
|
|
Emission(FINAL_COLOR, albedo, SpecularTex.a, exposure);
|
|
|
|
if(lightningBolt) FINAL_COLOR = vec3(77.0, 153.0, 255.0);
|
|
|
|
#if defined DEFERRED_SPECULAR
|
|
vec3 specularNoises = vec3(BN.xy, blueNoise());
|
|
// DoSpecularReflections(FINAL_COLOR, viewPos, feetPlayerPos_normalized, WsunVec, specularNoises, normal, SpecularTex.r, SpecularTex.g, albedo, shadowColor, lightmap.y, hand);
|
|
|
|
FINAL_COLOR = specularReflections(viewPos, feetPlayerPos_normalized, WsunVec, specularNoises, normal, SpecularTex.r, SpecularTex.g, albedo, FINAL_COLOR, shadowColor, lightmap.y, hand, isWater || (!isWater && isEyeInWater == 1));
|
|
#endif
|
|
|
|
|
|
gl_FragData[0].rgb = FINAL_COLOR;
|
|
// gl_FragData[0].rgb = vec3(1) * Absorbtion;
|
|
|
|
|
|
|
|
|
|
}else{
|
|
vec3 Background = vec3(0.0);
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
|
|
float atmosphereGround = 1.0 - exp2(-50.0 * pow(clamp(feetPlayerPos_normalized.y+0.025,0.0,1.0),2.0) ); // darken the ground in the sky.
|
|
|
|
#if RESOURCEPACK_SKY == 1 || RESOURCEPACK_SKY == 0 || RESOURCEPACK_SKY == 3
|
|
// vec3 orbitstar = vec3(feetPlayerPos_normalized.x,abs(feetPlayerPos_normalized.y),feetPlayerPos_normalized.z); orbitstar.x -= WsunVec.x*0.2;
|
|
vec3 orbitstar = normalize(mat3(gbufferModelViewInverse) * toScreenSpace(vec3(texcoord/RENDER_SCALE,1.0)));
|
|
// float radiance = 2.39996 - (worldTime + worldDay*24000.0) / 24000.0;
|
|
float radiance = 2.39996 ;
|
|
// float radiance = 2.39996 + frameTimeCounter;
|
|
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
|
|
|
orbitstar.xy *= rotationMatrix;
|
|
|
|
Background += stars(orbitstar) * 10.0 * clamp(-unsigned_WsunVec.y*2.0,0.0,1.0);
|
|
|
|
#if !defined ambientLight_only && (RESOURCEPACK_SKY == 1 || RESOURCEPACK_SKY == 0)
|
|
Background += drawSun(dot(lightCol.a * WsunVec, feetPlayerPos_normalized),0, DirectLightColor,vec3(0.0));
|
|
Background += drawMoon(feetPlayerPos_normalized, lightCol.a * WsunVec, DirectLightColor, Background);
|
|
#endif
|
|
|
|
Background *= atmosphereGround;
|
|
#endif
|
|
|
|
vec3 Sky = skyFromTex(feetPlayerPos_normalized, colortex4)/1200.0 * Sky_Brightness;
|
|
Background += Sky;
|
|
|
|
#endif
|
|
|
|
// #if RESOURCEPACK_SKY == 1 || RESOURCEPACK_SKY == 2 || RESOURCEPACK_SKY == 3
|
|
// vec3 resourcePackskyBox = toLinear(texture2D(colortex10, texcoord).rgb * 5.0) * 15.0 * clamp(unsigned_WsunVec.y*2.0,0.1,1.0);
|
|
|
|
// #ifdef SKY_GROUND
|
|
// resourcePackskyBox *= atmosphereGround;
|
|
// #endif
|
|
|
|
// Background += resourcePackskyBox;
|
|
// #endif
|
|
|
|
#if defined OVERWORLD_SHADER && defined VOLUMETRIC_CLOUDS && !defined CLOUDS_INTERSECT_TERRAIN
|
|
vec4 Clouds = texture2D_bicubic_offset(colortex0, texcoord*CLOUDS_QUALITY, noise, RENDER_SCALE.x);
|
|
Background = Background * Clouds.a + Clouds.rgb;
|
|
#endif
|
|
|
|
gl_FragData[0].rgb = clamp(fp10Dither(Background, triangularize(noise_2)), 0.0, 65000.);
|
|
}
|
|
|
|
|
|
if(translucentMasks > 0.0 && isEyeInWater != 1){
|
|
|
|
// water absorbtion will impact ALL light coming up from terrain underwater.
|
|
gl_FragData[0].rgb *= Absorbtion;
|
|
|
|
vec4 vlBehingTranslucents = BilateralUpscale_VLFOG(colortex13, depthtex1, gl_FragCoord.xy - 1.5, ld(z));
|
|
|
|
gl_FragData[0].rgb = gl_FragData[0].rgb * vlBehingTranslucents.a + vlBehingTranslucents.rgb;
|
|
|
|
}
|
|
|
|
////// DEBUG VIEW STUFF
|
|
#if DEBUG_VIEW == debug_SHADOWMAP
|
|
gl_FragData[0].rgb = vec3(0.5) + vec3(1.0) * Shadows * 30.0;
|
|
#endif
|
|
#if DEBUG_VIEW == debug_NORMALS
|
|
if(swappedDepth >= 1.0) Direct_lighting = vec3(1.0);
|
|
gl_FragData[0].rgb = normal ;
|
|
#endif
|
|
#if DEBUG_VIEW == debug_SPECULAR
|
|
if(swappedDepth >= 1.0) Direct_lighting = vec3(1.0);
|
|
gl_FragData[0].rgb = SpecularTex.rgb;
|
|
#endif
|
|
#if DEBUG_VIEW == debug_INDIRECT
|
|
if(swappedDepth >= 1.0) Direct_lighting = vec3(5.0);
|
|
gl_FragData[0].rgb = Indirect_lighting;
|
|
#endif
|
|
#if DEBUG_VIEW == debug_DIRECT
|
|
if(swappedDepth >= 1.0) Direct_lighting = vec3(1.0);
|
|
gl_FragData[0].rgb = Direct_lighting;
|
|
#endif
|
|
#if DEBUG_VIEW == debug_VIEW_POSITION
|
|
gl_FragData[0].rgb = viewPos * 0.001;
|
|
#endif
|
|
#if DEBUG_VIEW == debug_FILTERED_STUFF
|
|
|
|
// gl_FragData[0].rgb = texture2D(colortex14, texcoord).xyz;
|
|
if(hideGUI == 1) gl_FragData[0].rgb = vec3(1) * (1.0 - SSAO_SSS.y);
|
|
if(hideGUI == 0) gl_FragData[0].rgb = vec3(1) * pow(SSAO_SSS.x,6.0);
|
|
if(swappedDepth >= 1.0) gl_FragData[0].rgb = vec3(0.5);
|
|
// if(hideGUI == 0) gl_FragData[0].rgb = vec3(1) * exp(-10*filteredShadow.y);//exp(-7*(1-clamp(1.0 - filteredShadow.x,0.0,1.0)));
|
|
#endif
|
|
// gl_FragData[0].rgb = albedo*30;
|
|
// gl_FragData[0].rgb = vec3(1) * Shadows;
|
|
// if(swappedDepth >= 1.0) gl_FragData[0].rgb = vec3(0.1);
|
|
|
|
// gl_FragData[0].rgb = vec3(1) * ld(texture2D(depthtex1, texcoord).r);
|
|
// if(texcoord.x > 0.5 )
|
|
|
|
// gl_FragData[0].rgb = vec3(1) * filteredShadow.y;
|
|
// if(swappedDepth >= 1.0) gl_FragData[0].rgb += vec3(0.5);
|
|
|
|
/* RENDERTARGETS:3 */
|
|
} |