mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-04 00:23:41 +08:00
252 lines
8.9 KiB
GLSL
252 lines
8.9 KiB
GLSL
#version 120
|
|
#extension GL_EXT_gpu_shader4 : enable
|
|
|
|
#include "lib/settings.glsl"
|
|
|
|
#include "lib/res_params.glsl"
|
|
flat varying vec3 ambientUp;
|
|
flat varying vec3 ambientLeft;
|
|
flat varying vec3 ambientRight;
|
|
flat varying vec3 ambientB;
|
|
flat varying vec3 ambientF;
|
|
flat varying vec3 ambientDown;
|
|
flat varying vec3 zenithColor;
|
|
flat varying vec3 sunColor;
|
|
flat varying vec3 sunColorCloud;
|
|
flat varying vec3 moonColor;
|
|
flat varying vec3 moonColorCloud;
|
|
flat varying vec3 lightSourceColor;
|
|
flat varying vec3 avgSky;
|
|
flat varying vec2 tempOffsets;
|
|
flat varying float exposure;
|
|
flat varying float avgBrightness;
|
|
flat varying float exposureF;
|
|
flat varying float rodExposure;
|
|
flat varying float fogAmount;
|
|
flat varying float VFAmount;
|
|
flat varying float avgL2;
|
|
flat varying float centerDepth;
|
|
|
|
uniform sampler2D colortex4;
|
|
uniform sampler2D colortex6;
|
|
uniform sampler2D depthtex0;
|
|
|
|
|
|
flat varying vec3 WsunVec;
|
|
uniform mat4 gbufferModelViewInverse;
|
|
uniform vec3 sunPosition;
|
|
uniform vec2 texelSize;
|
|
uniform float rainStrength;
|
|
uniform float sunElevation;
|
|
uniform float nightVision;
|
|
uniform float near;
|
|
uniform float far;
|
|
uniform float frameTime;
|
|
uniform float eyeAltitude;
|
|
uniform int frameCounter;
|
|
// uniform int worldTime;
|
|
vec3 sunVec = normalize(mat3(gbufferModelViewInverse) *sunPosition);
|
|
|
|
|
|
|
|
#include "lib/sky_gradient.glsl"
|
|
#include "/lib/util.glsl"
|
|
#include "/lib/ROBOBO_sky.glsl"
|
|
|
|
|
|
vec3 rodSample(vec2 Xi)
|
|
{
|
|
float r = sqrt(1.0f - Xi.x*Xi.y);
|
|
float phi = 2 * 3.14159265359 * Xi.y;
|
|
|
|
return normalize(vec3(cos(phi) * r, sin(phi) * r, Xi.x)).xzy;
|
|
}
|
|
vec3 cosineHemisphereSample(vec2 Xi)
|
|
{
|
|
float r = sqrt(Xi.x);
|
|
float theta = 2.0 * 3.14159265359 * Xi.y;
|
|
|
|
float x = r * cos(theta);
|
|
float y = r * sin(theta);
|
|
|
|
return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.)));
|
|
}
|
|
|
|
float luma(vec3 color) {
|
|
return dot(color,vec3(0.21, 0.72, 0.07));
|
|
}
|
|
|
|
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter)
|
|
{
|
|
float alpha = float(sampleNumber+jitter)/nb;
|
|
float angle = (jitter+alpha) * (nbRot * 6.28);
|
|
|
|
float ssR = alpha;
|
|
float sin_v, cos_v;
|
|
|
|
sin_v = sin(angle);
|
|
cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v)*ssR;
|
|
}
|
|
//Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
|
|
vec2 R2_samples(int n){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha * n);
|
|
}
|
|
float tanh(float x){
|
|
return (exp(x) - exp(-x))/(exp(x) + exp(-x));
|
|
}
|
|
float ld(float depth) {
|
|
return (2.0 * near) / (far + near - depth * (far - near)); // (-depth * (far - near)) = (2.0 * near)/ld - far - near
|
|
}
|
|
void main() {
|
|
|
|
gl_Position = ftransform()*0.5+0.5;
|
|
gl_Position.xy = gl_Position.xy*vec2(18.+258*2,258.)*texelSize;
|
|
gl_Position.xy = gl_Position.xy*2.-1.0;
|
|
|
|
tempOffsets = R2_samples(frameCounter%10000);
|
|
|
|
ambientUp = vec3(0.0);
|
|
ambientDown = vec3(0.0);
|
|
ambientLeft = vec3(0.0);
|
|
ambientRight = vec3(0.0);
|
|
ambientB = vec3(0.0);
|
|
ambientF = vec3(0.0);
|
|
avgSky = vec3(0.0);
|
|
//Integrate sky light for each block side
|
|
int maxIT = 20;
|
|
for (int i = 0; i < maxIT; i++) {
|
|
vec2 ij = R2_samples((frameCounter%1000)*maxIT+i);
|
|
vec3 pos = normalize(rodSample(ij));
|
|
|
|
|
|
vec3 samplee = 1.72*skyFromTex(pos,colortex4).rgb/maxIT/150.;
|
|
avgSky += samplee/1.72;
|
|
ambientUp += samplee*(pos.y+abs(pos.x)/7.+abs(pos.z)/7.);
|
|
ambientLeft += samplee*(clamp(-pos.x,0.0,1.0)+clamp(pos.y/7.,0.0,1.0)+abs(pos.z)/7.);
|
|
ambientRight += samplee*(clamp(pos.x,0.0,1.0)+clamp(pos.y/7.,0.0,1.0)+abs(pos.z)/7.);
|
|
ambientB += samplee*(clamp(pos.z,0.0,1.0)+abs(pos.x)/7.+clamp(pos.y/7.,0.0,1.0));
|
|
ambientF += samplee*(clamp(-pos.z,0.0,1.0)+abs(pos.x)/7.+clamp(pos.y/7.,0.0,1.0));
|
|
ambientDown += samplee*(clamp(pos.y/6.,0.0,1.0)+abs(pos.x)/7.+abs(pos.z)/7.);
|
|
|
|
/*
|
|
ambientUp += samplee*(pos.y);
|
|
ambientLeft += samplee*(clamp(-pos.x,0.0,1.0));
|
|
ambientRight += samplee*(clamp(pos.x,0.0,1.0));
|
|
ambientB += samplee*(clamp(pos.z,0.0,1.0));
|
|
ambientF += samplee*(clamp(-pos.z,0.0,1.0));
|
|
ambientDown += samplee*(clamp(pos.y/6.,0.0,1.0))*0;
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
vec2 planetSphere = vec2(0.0);
|
|
vec3 sky = vec3(0.0);
|
|
vec3 skyAbsorb = vec3(0.0);
|
|
|
|
float sunVis = clamp(sunElevation,0.0,0.05)/0.05*clamp(sunElevation,0.0,0.05)/0.05;
|
|
float moonVis = clamp(-sunElevation,0.0,0.05)/0.05*clamp(-sunElevation,0.0,0.05)/0.05;
|
|
|
|
zenithColor = calculateAtmosphere(vec3(0.0), vec3(0.0,1.0,0.0), vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,tempOffsets.x);
|
|
skyAbsorb = vec3(0.0);
|
|
vec3 absorb = vec3(0.0);
|
|
sunColor = calculateAtmosphere(vec3(0.0), sunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.0);
|
|
sunColor = sunColorBase/4000. * skyAbsorb;
|
|
|
|
skyAbsorb = vec3(1.0);
|
|
float dSun = 0.03;
|
|
vec3 modSunVec = sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0);
|
|
vec3 modSunVec2 = sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0);
|
|
if (modSunVec2.y > modSunVec.y) modSunVec = modSunVec2;
|
|
sunColorCloud = calculateAtmosphere(vec3(0.0), modSunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.);
|
|
sunColorCloud = sunColorBase/4000. * skyAbsorb ;
|
|
|
|
skyAbsorb = vec3(1.0);
|
|
moonColor = calculateAtmosphere(vec3(0.0), -sunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.5);
|
|
moonColor = moonColorBase/4000.0*skyAbsorb;
|
|
|
|
skyAbsorb = vec3(1.0);
|
|
modSunVec = -sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0);
|
|
modSunVec2 = -sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0);
|
|
if (modSunVec2.y > modSunVec.y) modSunVec = modSunVec2;
|
|
moonColorCloud = calculateAtmosphere(vec3(0.0), modSunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.5);
|
|
|
|
moonColorCloud = moonColorBase/4000.0*0.55;
|
|
|
|
// #ifndef CLOUDS_SHADOWS
|
|
// sunColor *= (1.0-rainStrength*vec3(0.96,0.95,0.94));
|
|
// moonColor *= (1.0-rainStrength*vec3(0.96,0.95,0.94));
|
|
// #endif
|
|
|
|
lightSourceColor = sunVis >= 1e-5 ? sunColor * sunVis : moonColor * moonVis;
|
|
|
|
float lightDir = float( sunVis >= 1e-5)*2.0-1.0;
|
|
|
|
|
|
//Fake bounced sunlight
|
|
vec3 bouncedSun = lightSourceColor*0.1/5.0*0.5*clamp(lightDir*sunVec.y,0.0,1.0)*clamp(lightDir*sunVec.y,0.0,1.0);
|
|
vec3 cloudAmbientSun = (sunColorCloud)*0.007;
|
|
vec3 cloudAmbientMoon = (moonColorCloud)*0.007;
|
|
ambientUp += bouncedSun*clamp(-lightDir*sunVec.y+4.,0.,4.0) + cloudAmbientSun*clamp(sunVec.y+2.,0.,4.0) + cloudAmbientMoon*clamp(-sunVec.y+2.,0.,4.0);
|
|
ambientLeft += bouncedSun*clamp(lightDir*sunVec.x+4.,0.0,4.) + cloudAmbientSun*clamp(-sunVec.x+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(sunVec.x+2.,0.0,4.)*0.7;
|
|
ambientRight += bouncedSun*clamp(-lightDir*sunVec.x+4.,0.0,4.) + cloudAmbientSun*clamp(sunVec.x+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(-sunVec.x+2.,0.0,4.)*0.7;
|
|
ambientB += bouncedSun*clamp(-lightDir*sunVec.z+4.,0.0,4.) + cloudAmbientSun*clamp(sunVec.z+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(-sunVec.z+2.,0.0,4.)*0.7;
|
|
ambientF += bouncedSun*clamp(lightDir*sunVec.z+4.,0.0,4.) + cloudAmbientSun*clamp(-sunVec.z+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(sunVec.z+2.,0.0,4.)*0.7;
|
|
ambientDown += bouncedSun*clamp(lightDir*sunVec.y+4.,0.0,4.)*0.7 + cloudAmbientSun*clamp(-sunVec.y+2.,0.0,4.)*0.5 + cloudAmbientMoon*clamp(sunVec.y+2.,0.0,4.)*0.5;
|
|
avgSky += bouncedSun*5.;
|
|
|
|
vec3 rainNightBoost = moonColorCloud*0.005;
|
|
ambientUp += rainNightBoost;
|
|
ambientLeft += rainNightBoost;
|
|
ambientRight += rainNightBoost;
|
|
ambientB += rainNightBoost;
|
|
ambientF += rainNightBoost;
|
|
ambientDown += rainNightBoost;
|
|
avgSky += rainNightBoost;
|
|
|
|
float avgLuma = 0.0;
|
|
float m2 = 0.0;
|
|
int n=100;
|
|
vec2 clampedRes = max(1.0/texelSize,vec2(1920.0,1080.));
|
|
float avgExp = 0.0;
|
|
float avgB = 0.0;
|
|
vec2 resScale = vec2(1920.,1080.)/clampedRes*BLOOM_QUALITY;
|
|
const int maxITexp = 50;
|
|
float w = 0.0;
|
|
for (int i = 0; i < maxITexp; i++){
|
|
vec2 ij = R2_samples((frameCounter%2000)*maxITexp+i);
|
|
vec2 tc = 0.5 + (ij-0.5) * 0.7;
|
|
vec3 sp = texture2D(colortex6,tc/16. * resScale+vec2(0.375*resScale.x+4.5*texelSize.x,.0)).rgb;
|
|
avgExp += log(luma(sp));
|
|
avgB += log(min(dot(sp,vec3(0.07,0.22,0.71)),8e-2));
|
|
}
|
|
|
|
avgExp = exp(avgExp/maxITexp);
|
|
avgB = exp(avgB/maxITexp);
|
|
|
|
avgBrightness = clamp(mix(avgExp,texelFetch2D(colortex4,ivec2(10,37),0).g,0.95),0.00003051757,65000.0);
|
|
|
|
float L = max(avgBrightness,1e-8);
|
|
float keyVal = 1.03-2.0/(log(L*4000/150.*8./3.0+1.0)/log(10.0)+2.0);
|
|
float expFunc = 0.5+0.5*tanh(log(L));
|
|
float targetExposure = 0.18/log2(L*2.5+1.045)*0.62;
|
|
|
|
avgL2 = clamp(mix(avgB,texelFetch2D(colortex4,ivec2(10,37),0).b,0.985),0.00003051757,65000.0);
|
|
float targetrodExposure = max(0.012/log2(avgL2+1.002)-0.1,0.0)*1.2;
|
|
|
|
|
|
exposure=max(targetExposure*EXPOSURE_MULTIPLIER, 0);
|
|
float currCenterDepth = ld(texture2D(depthtex0, vec2(0.5)*RENDER_SCALE).r);
|
|
centerDepth = mix(sqrt(texelFetch2D(colortex4,ivec2(14,37),0).g/65000.0), currCenterDepth, clamp(DoF_Adaptation_Speed*exp(-0.016/frameTime+1.0)/(6.0+currCenterDepth*far),0.0,1.0));
|
|
centerDepth = centerDepth * centerDepth * 65000.0;
|
|
|
|
rodExposure = targetrodExposure;
|
|
|
|
#ifndef AUTO_EXPOSURE
|
|
exposure = Manual_exposure_value;
|
|
rodExposure = clamp(log(Manual_exposure_value*2.0+1.0)-0.1,0.0,2.0);
|
|
#endif
|
|
} |