mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-05 09:03:39 +08:00
585 lines
21 KiB
GLSL
585 lines
21 KiB
GLSL
// uniform int framemod8;
|
|
|
|
// const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
|
// vec2(-1.,3.)/8.,
|
|
// vec2(5.0,1.)/8.,
|
|
// vec2(-3,-5.)/8.,
|
|
// vec2(-5.,5.)/8.,
|
|
// vec2(-7.,-1.)/8.,
|
|
// vec2(3,7.)/8.,
|
|
// vec2(7.,-7.)/8.);
|
|
|
|
vec3 lerp(vec3 X, vec3 Y, float A){
|
|
return X * (1.0 - A) + Y * A;
|
|
}
|
|
|
|
float lerp(float X, float Y, float A){
|
|
return X * (1.0 - A) + Y * A;
|
|
}
|
|
|
|
float square(float x){
|
|
return x*x;
|
|
}
|
|
|
|
|
|
|
|
// vec3 toClipSpace3(vec3 viewSpacePosition) {
|
|
// return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
|
// }
|
|
float invLinZ (float lindepth){
|
|
return -((2.0*near/lindepth)-far-near)/(far-near);
|
|
}
|
|
float linZ(float depth) {
|
|
return (2.0 * near) / (far + near - depth * (far - near));
|
|
// l = (2*n)/(f+n-d(f-n))
|
|
// f+n-d(f-n) = 2n/l
|
|
// -d(f-n) = ((2n/l)-f-n)
|
|
// d = -((2n/l)-f-n)/(f-n)
|
|
|
|
}
|
|
|
|
void frisvad(in vec3 n, out vec3 f, out vec3 r){
|
|
if(n.z < -0.9) {
|
|
f = vec3(0.,-1,0);
|
|
r = vec3(-1, 0, 0);
|
|
} else {
|
|
float a = 1./(1.+n.z);
|
|
float b = -n.x*n.y*a;
|
|
f = vec3(1. - n.x*n.x*a, b, -n.x) ;
|
|
r = vec3(b, 1. - n.y*n.y*a , -n.y);
|
|
}
|
|
}
|
|
|
|
mat3 CoordBase(vec3 n){
|
|
vec3 x,y;
|
|
frisvad(n,x,y);
|
|
return mat3(x,y,n);
|
|
}
|
|
|
|
vec2 R2_Sample(int n){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha * n);
|
|
}
|
|
|
|
float fma(float a,float b,float c){
|
|
return a * b + c;
|
|
}
|
|
|
|
vec3 SampleVNDFGGX(
|
|
vec3 viewerDirection, // Direction pointing towards the viewer, oriented such that +Z corresponds to the surface normal
|
|
float alpha, // Roughness parameter along X and Y of the distribution
|
|
vec2 xy // Pair of uniformly distributed numbers in [0, 1)
|
|
) {
|
|
|
|
// Transform viewer direction to the hemisphere configuration
|
|
viewerDirection = normalize(vec3( alpha * 0.5 * viewerDirection.xy, viewerDirection.z));
|
|
|
|
// Sample a reflection direction off the hemisphere
|
|
const float tau = 6.2831853; // 2 * pi
|
|
float phi = tau * xy.x;
|
|
|
|
float cosTheta = fma(1.0 - xy.y, 1.0 + viewerDirection.z, -viewerDirection.z);
|
|
float sinTheta = sqrt(clamp(1.0 - cosTheta * cosTheta, 0.0, 1.0));
|
|
|
|
sinTheta = clamp(sinTheta,0.0,1.0);
|
|
cosTheta = clamp(cosTheta,sinTheta*0.5,1.0);
|
|
|
|
|
|
vec3 reflected = vec3(vec2(cos(phi), sin(phi)) * sinTheta, cosTheta);
|
|
|
|
// Evaluate halfway direction
|
|
// This gives the normal on the hemisphere
|
|
vec3 halfway = reflected + viewerDirection;
|
|
|
|
// Transform the halfway direction back to hemiellispoid configuation
|
|
// This gives the final sampled normal
|
|
return normalize(vec3(alpha * halfway.xy, halfway.z));
|
|
}
|
|
|
|
vec3 GGX(vec3 n, vec3 v, vec3 l, float r, vec3 f0, vec3 metalAlbedoTint) {
|
|
r = max(pow(r,2.5), 0.0001);
|
|
|
|
vec3 h = normalize(l + v);
|
|
float hn = inversesqrt(dot(h, h));
|
|
|
|
float dotLH = clamp(dot(h,l)*hn,0.,1.);
|
|
float dotNH = clamp(dot(h,n)*hn,0.,1.) ;
|
|
float dotNL = clamp(dot(n,l),0.,1.);
|
|
float dotNHsq = dotNH*dotNH;
|
|
|
|
float denom = dotNHsq * r - dotNHsq + 1.;
|
|
float D = r / (3.141592653589793 * denom * denom);
|
|
|
|
vec3 F = (f0 + (1. - f0) * exp2((-5.55473*dotLH-6.98316)*dotLH)) * metalAlbedoTint;
|
|
float k2 = .25 * r;
|
|
|
|
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
|
|
}
|
|
|
|
float shlickFresnelRoughness(float XdotN, float roughness){
|
|
|
|
float shlickFresnel = clamp(1.0 + XdotN,0.0,1.0);
|
|
|
|
// shlickFresnel = pow(1.0-pow(1.0-shlickFresnel, mix(1.0,2.1,roughness)), mix(5.0,3.0,roughness));
|
|
// shlickFresnel = mix(0.0, mix(1.0,0.065,1-pow(1-roughness,3.5)), shlickFresnel);
|
|
|
|
|
|
// float curves = 1.0-exp(-1.3*roughness);
|
|
// float brightness = 1.0-exp(-4.0*roughness);
|
|
|
|
float curves = exp(-4.0*pow(1-(roughness),2.5));
|
|
float brightness = exp(-3.0*pow(1-sqrt(roughness),3.50));
|
|
|
|
|
|
shlickFresnel = pow(1.0-pow(1.0-shlickFresnel, mix(1.0, 1.9, curves)),mix(5.0, 2.6, curves));
|
|
|
|
|
|
|
|
|
|
shlickFresnel = mix(0.0, mix(1.0,0.065, brightness) , clamp(shlickFresnel,0.0,1.0));
|
|
|
|
return shlickFresnel;
|
|
}
|
|
|
|
vec3 rayTraceSpeculars(vec3 dir, vec3 position, float dither, float quality, bool hand, inout float reflectionLength, float fresnel){
|
|
|
|
float biasAmount = 0.00005;//mix(0.00035, 0.00005, pow(fresnel,0.01));
|
|
|
|
vec3 clipPosition = toClipSpace3(position);
|
|
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
|
|
(-near -position.z) / dir.z : far*sqrt(3.);
|
|
vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
|
|
direction.xy = normalize(direction.xy);
|
|
|
|
//get at which length the ray intersects with the edge of the screen
|
|
vec3 maxLengths = (step(0.0,direction)-clipPosition) / direction;
|
|
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z);
|
|
|
|
vec3 stepv = direction * mult / quality*vec3(RENDER_SCALE,1.0);
|
|
|
|
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*(dither-0.5);
|
|
|
|
#ifndef FORWARD_SPECULAR
|
|
spos.xy += TAA_Offset*texelSize*0.5/RENDER_SCALE;
|
|
#endif
|
|
|
|
float minZ = spos.z;
|
|
float maxZ = spos.z;
|
|
|
|
|
|
|
|
for (int i = 0; i <= int(quality); i++) {
|
|
|
|
float sp = invLinZ(sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4.0),0).a/65000.0));
|
|
|
|
float currZ = linZ(spos.z);
|
|
float nextZ = linZ(sp);
|
|
|
|
// if(abs(nextZ-currZ) < mix(0.005,0.5,currZ*currZ) && sp < max(minZ,maxZ) && sp > min(minZ,maxZ)) return vec3(spos.xy/RENDER_SCALE,sp);
|
|
if(sp < max(minZ,maxZ) && sp > min(minZ,maxZ)) return vec3(spos.xy/RENDER_SCALE,sp);
|
|
|
|
minZ = maxZ-biasAmount / currZ;
|
|
maxZ += stepv.z;
|
|
|
|
spos += stepv;
|
|
|
|
reflectionLength += 1.0 / quality;
|
|
|
|
}
|
|
return vec3(1.1);
|
|
}
|
|
|
|
vec4 screenSpaceReflections(
|
|
vec3 reflectedVector,
|
|
vec3 viewPos,
|
|
float noise,
|
|
|
|
bool isHand,
|
|
float roughness,
|
|
float fresnel
|
|
|
|
){
|
|
vec4 reflection = vec4(0.0);
|
|
|
|
float reflectionLength = 0.0;
|
|
float quality = 30.0f;//mix(10.0f, 30.0f, fresnel);
|
|
|
|
vec3 raytracePos = rayTraceSpeculars(reflectedVector, viewPos, noise, quality, isHand, reflectionLength, fresnel);
|
|
|
|
if (raytracePos.z >= 1.0) return reflection;
|
|
|
|
// use higher LOD as the reflection goes on, to blur it. this helps denoise a little.
|
|
|
|
float value = 0.1;
|
|
reflectionLength = min(max(reflectionLength - value, 0.0)/(1.0-value), 1.0);
|
|
|
|
float LOD = mix(0.0, 6.0*(1.0-exp(-15.0*sqrt(roughness))), 1.0-pow(1.0-reflectionLength,5.0));
|
|
// float LOD = mix(0.0, 6.0*pow(roughness,0.1), 1.0-pow(1.0-reflectionLength,5.0));
|
|
|
|
// float LOD = clamp(pow(reflectionLength, pow(1.0-sqrt(roughness),5.0) * 3.0) * 6.0, 0.0, 6.0*pow(roughness,0.1));
|
|
|
|
|
|
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(raytracePos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
|
|
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
|
|
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
|
|
|
|
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
|
|
reflection.a = 1.0;
|
|
|
|
#ifdef FORWARD_RENDERED_SPECULAR
|
|
// vec2 clampedRes = max(vec2(viewWidth,viewHeight),vec2(1920.0,1080.));
|
|
// vec2 resScale = vec2(1920.,1080.)/clampedRes;
|
|
// vec2 bloomTileUV = (((previousPosition.xy/texelSize)*2.0 + 0.5)*texelSize/2.0) / clampedRes*vec2(1920.,1080.);
|
|
// reflection.rgb = texture2D(colortex6, bloomTileUV / 4.0).rgb;
|
|
reflection.rgb = texture2D(colortex5, previousPosition.xy).rgb;
|
|
#else
|
|
reflection.rgb = texture2DLod(colortex5, previousPosition.xy, LOD).rgb;
|
|
#endif
|
|
|
|
}
|
|
|
|
// reflection.rgb = vec3(LOD/6);
|
|
|
|
// vec2 clampedRes = max(vec2(viewWidth,viewHeight),vec2(1920.0,1080.));
|
|
// vec2 resScale = vec2(1920.,1080.)/clampedRes;
|
|
// vec2 bloomTileUV = (((previousPosition.xy/texelSize)*2.0 + 0.5)*texelSize/2.0) / clampedRes*vec2(1920.,1080.);
|
|
|
|
// vec2 bloomTileoffsetUV[6] = vec2[](
|
|
// bloomTileUV / 4.,
|
|
// bloomTileUV / 8. + vec2(0.25*resScale.x+2.5*texelSize.x, .0),
|
|
// bloomTileUV / 16. + vec2(0.375*resScale.x+4.5*texelSize.x, .0),
|
|
// bloomTileUV / 32. + vec2(0.4375*resScale.x+6.5*texelSize.x, .0),
|
|
// bloomTileUV / 64. + vec2(0.46875*resScale.x+8.5*texelSize.x, .0),
|
|
// bloomTileUV / 128. + vec2(0.484375*resScale.x+10.5*texelSize.x, .0)
|
|
// );
|
|
// // reflectLength = pow(1-pow(1-reflectLength,2),5) * 6;
|
|
// reflectLength = (exp(-4*(1-reflectLength))) * 6;
|
|
// Reflections.rgb = texture2D(colortex6, bloomTileoffsetUV[0]).rgb;
|
|
|
|
return reflection;
|
|
}
|
|
|
|
float getReflectionVisibility(float f0, float roughness){
|
|
|
|
// the goal is to determine if the reflection is even visible.
|
|
// if it reaches a point in smoothness or reflectance where it is not visible, allow it to interpolate to diffuse lighting.
|
|
float thresholdValue = Roughness_Threshold;
|
|
|
|
if(thresholdValue < 0.01) return 0.0;
|
|
|
|
// the visibility gradient should only happen for dialectric materials. because metal is always shiny i guess or something
|
|
float dialectrics = max(f0*255.0 - 26.0,0.0)/229.0;
|
|
float value = 0.35; // so to a value you think is good enough.
|
|
float thresholdA = min(max( (1.0-dialectrics) - value, 0.0)/value, 1.0);
|
|
|
|
// use perceptual smoothness instead of linear roughness. it just works better i guess
|
|
float smoothness = 1.0-sqrt(roughness);
|
|
value = thresholdValue; // this one is typically want you want to scale.
|
|
float thresholdB = min(max(smoothness - value, 0.0)/value, 1.0);
|
|
|
|
// preserve super smooth reflections. if thresholdB's value is really high, then fully smooth, low f0 materials would be removed (like water).
|
|
value = 0.1; // super low so only the smoothest of materials are includes.
|
|
float thresholdC = 1.0-min(max(value - (1.0-smoothness), 0.0)/value, 1.0);
|
|
|
|
float visibilityGradient = max(thresholdA*thresholdC - thresholdB,0.0);
|
|
|
|
// a curve to make the gradient look smooth/nonlinear. just preference
|
|
visibilityGradient = 1.0-visibilityGradient;
|
|
visibilityGradient *=visibilityGradient;
|
|
visibilityGradient = 1.0-visibilityGradient;
|
|
visibilityGradient *=visibilityGradient;
|
|
|
|
return visibilityGradient;
|
|
}
|
|
|
|
// derived from N and K from labPBR wiki https://shaderlabs.org/wiki/LabPBR_Material_Standard
|
|
// using ((1.0 - N)^2 + K^2) / ((1.0 + N)^2 + K^2)
|
|
vec3 HCM_F0 [8] = vec3[](
|
|
vec3(0.531228825312, 0.51235724246, 0.495828545714),// iron
|
|
vec3(0.944229966045, 0.77610211732, 0.373402004593),// gold
|
|
vec3(0.912298031535, 0.91385063144, 0.919680580954),// Aluminum
|
|
vec3(0.55559681715, 0.55453707574, 0.554779427513),// Chrome
|
|
vec3(0.925952196272, 0.72090163805, 0.504154241735),// Copper
|
|
vec3(0.632483812932, 0.62593707362, 0.641478899539),// Lead
|
|
vec3(0.678849234658, 0.64240055565, 0.588409633571),// Platinum
|
|
vec3(0.961999998804, 0.94946811207, 0.922115710997) // Silver
|
|
);
|
|
|
|
vec3 specularReflections(
|
|
|
|
in vec3 viewPos, // toScreenspace(vec3(screenUV, depth)
|
|
in vec3 playerPos, // normalized
|
|
in vec3 lightPos, // should be in world space
|
|
in vec3 noise, // x = bluenoise y = interleaved gradient noise
|
|
|
|
in vec3 normal, // normals in world space
|
|
in float roughness, // red channel of specular texture _S
|
|
in float f0, // green channel of specular texture _S
|
|
in vec3 albedo,
|
|
in vec3 diffuseLighting,
|
|
in vec3 lightColor, // should contain the light's color and shadows.
|
|
|
|
in float lightmap, // in anything other than world0, this should be 1.0;
|
|
in bool isHand // mask for the hand
|
|
|
|
#ifdef FORWARD_SPECULAR
|
|
, inout float reflectanceForAlpha
|
|
#else
|
|
, bool isWater
|
|
#endif
|
|
){
|
|
#ifdef FORWARD_RENDERED_SPECULAR
|
|
lightmap = pow(min(max(lightmap-0.6,0.0)*2.5,1.0),2.0);
|
|
#else
|
|
lightmap = clamp((lightmap-0.8)*7.0, 0.0,1.0);
|
|
#endif
|
|
|
|
roughness = 1.0 - roughness;
|
|
roughness *= roughness;
|
|
|
|
f0 = f0 == 0.0 ? 0.02 : f0;
|
|
|
|
// f0 = 0.9;
|
|
// roughness = 0.0;
|
|
|
|
bool isMetal = f0 > 229.5/255.0;
|
|
|
|
// #ifndef FORWARD_RENDERED_SPECULAR
|
|
// // underwater, convert from f0 air, to ior, then back to f0 water
|
|
// if(!isMetal || isWater){
|
|
// f0 = 2.0 / (1.0 - sqrt(f0)) - 1.0;
|
|
// f0 = clamp(pow((1.33 - f0) / (1.33 + f0), 2.0),0.0,1.0);
|
|
// }
|
|
// #endif
|
|
|
|
// get reflected vector
|
|
mat3 basis = CoordBase(normal);
|
|
vec3 viewDir = -playerPos*basis;
|
|
|
|
#if defined FORWARD_ROUGH_REFLECTION || defined DEFERRED_ROUGH_REFLECTION
|
|
vec3 samplePoints = SampleVNDFGGX(viewDir, roughness, noise.xy);
|
|
vec3 reflectedVector_L = basis * reflect(-normalize(viewDir), samplePoints);
|
|
|
|
// get reflectance and f0/HCM values
|
|
// float shlickFresnel = pow(clamp(1.0 + dot(-reflectedVector, samplePoints),0.0,1.0),5.0);
|
|
#else
|
|
vec3 reflectedVector_L = reflect(playerPos, normal);
|
|
#endif
|
|
|
|
float shlickFresnel = shlickFresnelRoughness(dot(-normalize(viewDir), vec3(0.0,0.0,1.0)), roughness);
|
|
|
|
// #if defined FORWARD_RENDERED_SPECULAR && defined SNELLS_WINDOW
|
|
// if(isEyeInWater == 1) shlickFresnel = mix(shlickFresnel, 1.0, min(max(0.97 - (1-shlickFresnel),0.0)/(1-0.97),1.0));
|
|
// #endif
|
|
|
|
// F0 < 230 dialectrics
|
|
// F0 >= 230 hardcoded metal f0
|
|
// F0 == 255 use albedo for f0
|
|
albedo = f0 == 1.0 ? sqrt(albedo) : albedo;
|
|
vec3 metalAlbedoTint = isMetal ? albedo : vec3(1.0);
|
|
// get F0 values for hardcoded metals.
|
|
vec3 hardCodedMetalsF0 = f0 == 1.0 ? albedo : HCM_F0[int(clamp(f0*255.0 - 229.5,0.0,7.0))];
|
|
vec3 reflectance = isMetal ? hardCodedMetalsF0 : vec3(f0);
|
|
vec3 F0 = (reflectance + (1.0-reflectance) * shlickFresnel) * metalAlbedoTint;
|
|
|
|
#if defined FORWARD_SPECULAR
|
|
reflectanceForAlpha = clamp(dot(F0, vec3(0.3333333)), 0.0,1.0);
|
|
#endif
|
|
|
|
vec3 specularReflections = diffuseLighting;
|
|
|
|
float reflectionVisibilty = getReflectionVisibility(f0, roughness);
|
|
|
|
#if defined DEFERRED_BACKGROUND_REFLECTION || defined FORWARD_BACKGROUND_REFLECTION || defined DEFERRED_ENVIORNMENT_REFLECTION || defined FORWARD_ENVIORNMENT_REFLECTION
|
|
if(reflectionVisibilty < 1.0){
|
|
#if defined DEFERRED_BACKGROUND_REFLECTION || defined FORWARD_BACKGROUND_REFLECTION
|
|
#if !defined OVERWORLD_SHADER && !defined FORWARD_SPECULAR
|
|
vec3 backgroundReflection = volumetricsFromTex(reflectedVector_L, colortex4, roughness).rgb / 1200.0;
|
|
#else
|
|
vec3 backgroundReflection = skyCloudsFromTex(reflectedVector_L, colortex4).rgb / 1200.0;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined DEFERRED_ENVIORNMENT_REFLECTION || defined FORWARD_ENVIORNMENT_REFLECTION
|
|
vec4 enviornmentReflection = screenSpaceReflections(mat3(gbufferModelView) * reflectedVector_L, viewPos, noise.y, isHand, roughness, shlickFresnel);
|
|
// darkening for metals.
|
|
vec3 DarkenedDiffuseLighting = isMetal ? diffuseLighting * (1.0-enviornmentReflection.a) * (1.0-lightmap) : diffuseLighting;
|
|
#else
|
|
// darkening for metals.
|
|
vec3 DarkenedDiffuseLighting = isMetal ? diffuseLighting * (1.0-lightmap) : diffuseLighting;
|
|
#endif
|
|
|
|
// composite all the different reflections together
|
|
#if defined DEFERRED_BACKGROUND_REFLECTION || defined FORWARD_BACKGROUND_REFLECTION
|
|
specularReflections = mix(DarkenedDiffuseLighting, backgroundReflection, lightmap);
|
|
#endif
|
|
|
|
#if defined DEFERRED_ENVIORNMENT_REFLECTION || defined FORWARD_ENVIORNMENT_REFLECTION
|
|
specularReflections = mix(specularReflections, enviornmentReflection.rgb, enviornmentReflection.a);
|
|
#endif
|
|
|
|
specularReflections = mix(DarkenedDiffuseLighting, specularReflections, F0);
|
|
|
|
// lerp back to diffuse lighting if the reflection has not been deemed visible enough
|
|
specularReflections = mix(specularReflections, diffuseLighting, reflectionVisibilty);
|
|
}
|
|
#endif
|
|
|
|
#if defined OVERWORLD_SHADER
|
|
vec3 lightSourceReflection = Sun_specular_Strength * lightColor * GGX(normal, -playerPos, lightPos, roughness, reflectance, metalAlbedoTint);
|
|
specularReflections += lightSourceReflection;
|
|
#endif
|
|
|
|
return specularReflections;
|
|
}
|
|
/*
|
|
void DoSpecularReflections(
|
|
inout vec3 Output,
|
|
|
|
vec3 FragPos, // toScreenspace(vec3(screenUV, depth)
|
|
vec3 WorldPos,
|
|
vec3 LightPos, // should be in world space
|
|
vec2 Noise, // x = bluenoise z = interleaved gradient noise
|
|
|
|
vec3 Normal, // normals in world space
|
|
float Roughness, // red channel of specular texture _S
|
|
float F0, // green channel of specular texture _S
|
|
|
|
vec3 Albedo,
|
|
vec3 Diffuse, // should contain the light color and NdotL. and maybe shadows.
|
|
|
|
float Lightmap, // in anything other than world0, this should be 1.0;
|
|
bool Hand // mask for the hand
|
|
){
|
|
vec3 Final_Reflection = Output;
|
|
vec3 Background_Reflection = Output;
|
|
vec3 Lightsource_Reflection = vec3(0.0);
|
|
vec4 SS_Reflections = vec4(0.0);
|
|
float reflectLength = 0.0;
|
|
|
|
Lightmap = clamp((Lightmap-0.8)*7.0, 0.0,1.0);
|
|
|
|
Roughness = 1.0 - Roughness; Roughness *= Roughness;
|
|
F0 = F0 == 0.0 ? 0.02 : F0;
|
|
|
|
// F0 = 230.0/255.0;
|
|
// Roughness = 0.0;
|
|
|
|
// F0 = 230.0/255.0;
|
|
bool isMetal = F0 > 229.5/255.0;
|
|
|
|
// underwater, convert from f0 air, to ior, then back to f0 water
|
|
// if(!isMetal){
|
|
// F0 = 2.0 / (1.0 - sqrt(F0)) - 1.0;
|
|
// F0 = clamp(pow((1.33 - F0) / (1.33 + F0), 2.0),0.0,1.0);
|
|
// }
|
|
// Roughness = 0.0;
|
|
|
|
mat3 Basis = CoordBase(Normal);
|
|
vec3 ViewDir = -WorldPos*Basis;
|
|
|
|
#ifdef Rough_reflections
|
|
vec3 SamplePoints = SampleVNDFGGX(ViewDir, Roughness, Noise.xy);
|
|
// vec3 SamplePoints = SampleVNDFGGX(ViewDir, vec2(0.1), Noise.x);
|
|
if(Hand) SamplePoints = vec3(0.0,0.0,1.0);
|
|
#else
|
|
vec3 SamplePoints = vec3(0.0,0.0,1.0);
|
|
#endif
|
|
|
|
|
|
vec3 Ln = reflect(-ViewDir, SamplePoints);
|
|
vec3 L = Basis * Ln;
|
|
|
|
float Fresnel = pow(clamp(1.0 + dot(-Ln, SamplePoints),0.0,1.0),5.0); // Schlick's approximation
|
|
// F0 < 230 dialectrics
|
|
// F0 >= 230 hardcoded metal f0
|
|
// F0 == 255 use albedo for f0
|
|
Albedo = F0 == 1.0 ? sqrt(Albedo) : Albedo;
|
|
|
|
vec3 metalAlbedoTint = isMetal ? Albedo : vec3(1.0);
|
|
// metalAlbedoTint = vec3(1.0);
|
|
// get F0 values for hardcoded metals.
|
|
vec3 hardCodedMetalsF0 = F0 == 1.0 ? Albedo : HCM_F0[int(max(F0*255.0 - 229.5,0.0))];
|
|
|
|
vec3 reflectance = isMetal ? hardCodedMetalsF0 : vec3(F0);
|
|
|
|
vec3 f0 = (reflectance + (1.0-reflectance) * Fresnel) * metalAlbedoTint;
|
|
|
|
// reflectance = mix(vec3(F0), vec3(1.0), Fresnel);
|
|
|
|
// vec3 reflectance = mix(R0, vec3(1.0), Fresnel); // ensure that when the angle is 0 that the correct F0 is used.
|
|
|
|
// #ifdef Rough_reflections
|
|
// if(Hand) Fresnel = Fresnel * pow(1.0-Roughness,F0 > 229.5/255.0 ? 1.0 : 3.0);
|
|
// #else
|
|
// Fresnel = Fresnel * pow(1.0-Roughness,3.0);
|
|
// #endif
|
|
|
|
bool hasReflections = Roughness_Threshold == 1.0 ? true : F0 * (1.0 - Roughness * Roughness_Threshold) > 0.01;
|
|
|
|
// mulitply all reflections by the albedo if it is a metal.
|
|
// vec3 Metals = F0 > 229.5/255.0 ? normalize(Albedo+1e-7) * (dot(Albedo,vec3(0.21, 0.72, 0.07)) * 0.7 + 0.3) : vec3(1.0);
|
|
// vec3 Metals = F0 > 229.5/255.0 ? Albedo : vec3(1.0);
|
|
|
|
// --------------- BACKGROUND REFLECTIONS
|
|
// apply background reflections to the final color. make sure it does not exist based on the lightmap
|
|
#ifdef Sky_reflection
|
|
|
|
#ifdef OVERWORLD_SHADER
|
|
if(hasReflections) Background_Reflection = (skyCloudsFromTex(L, colortex4).rgb / 1200.0) ;
|
|
#else
|
|
if(hasReflections) Background_Reflection = (volumetricsFromTex(L, colortex4, sqrt(Roughness) * 6.0).rgb / 1200.0) ;
|
|
#endif
|
|
|
|
// take fresnel and lightmap levels into account and write to the final color
|
|
// the minimum color being the output is for when the background reflection color is close to dark, it will fallback to a dimmed diffuse
|
|
// Final_Reflection = mix(Output, Background_Reflection, Lightmap * reflectance);
|
|
Final_Reflection = mix(Output, mix(isMetal ? vec3(0.0) : Output, Background_Reflection, f0 * Lightmap), Lightmap);
|
|
// Final_Reflection = Background_Reflection * reflectance;
|
|
#endif
|
|
|
|
// --------------- SCREENSPACE REFLECTIONS
|
|
// apply screenspace reflections to the final color and mask out background reflections.
|
|
#ifdef Screen_Space_Reflections
|
|
if(hasReflections){
|
|
|
|
float SSR_Quality =reflection_quality;// mix(6.0, reflection_quality, Fresnel); // Scale quality with fresnel
|
|
|
|
vec3 RaytracePos = rayTraceSpeculars(mat3(gbufferModelView) * L, FragPos, Noise.y, float(SSR_Quality), Hand, reflectLength);
|
|
float LOD = clamp(pow(reflectLength, pow(1.0-sqrt(Roughness),5.0) * 3.0) * 6.0, 0.0, 6.0); // use higher LOD as the reflection goes on, to blur it. this helps denoise a little.
|
|
// float LOD = clamp((1-pow(clamp(1.0-reflectLength,0,1),5.0)) * 6.0, 0.0, 6.0); // use higher LOD as the reflection goes on, to blur it. this helps denoise a little.
|
|
|
|
if(Roughness <= 0.0) LOD = 0.0;
|
|
|
|
// LOD = 0.0;
|
|
|
|
if (RaytracePos.z < 1.0){
|
|
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(RaytracePos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
|
|
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
|
|
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
|
|
|
|
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
|
|
SS_Reflections.a = 1.0;
|
|
SS_Reflections.rgb = texture2DLod(colortex5, previousPosition.xy, LOD).rgb;
|
|
}
|
|
}
|
|
// make sure it takes the fresnel into account for SSR.
|
|
SS_Reflections.rgb = mix(isMetal ? vec3(0.0) : Output, SS_Reflections.rgb, f0);
|
|
|
|
// occlude the background with the SSR and write to the final color.
|
|
Final_Reflection = mix(Final_Reflection, SS_Reflections.rgb, SS_Reflections.a);
|
|
}
|
|
#endif
|
|
|
|
// --------------- LIGHTSOURCE REFLECTIONS
|
|
// slap the main lightsource reflections to the final color.
|
|
#ifdef LIGHTSOURCE_REFLECTION
|
|
Lightsource_Reflection = Diffuse * GGX(Normal, -WorldPos, LightPos, Roughness, reflectance, metalAlbedoTint) * Sun_specular_Strength;
|
|
Final_Reflection += Lightsource_Reflection;
|
|
#endif
|
|
|
|
Output = Final_Reflection;
|
|
|
|
// Output = exp(-100 * (reflectLength*reflectLength*reflectLength)) * vec3(1.0);
|
|
}
|
|
*/ |