Bliss-Shader/shaders/world1/composite8.fsh
2023-01-12 15:00:14 -05:00

321 lines
13 KiB
GLSL

#version 120
//Temporal Anti-Aliasing + Dynamic exposure calculations (vertex shader)
#extension GL_EXT_gpu_shader4 : enable
#define TAA //if disabled you should increase most samples counts as I rely on TAA to filter noise
//#define FAST_TAA //disables bicubic resampling and closest velocity, improves fps especially at high resolutions
//TAA OPTIONS
//#define NO_CLIP //Removes all anti-ghosting techniques used and creates a sharp image (good for still screenshots)
#define BLEND_FACTOR 0.05 //[0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1 0.12 0.14 0.16] higher values = more flickering but sharper image, lower values = less flickering but the image will be blurrier
#define MOTION_REJECTION 0.5 //[0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5] //Higher values=sharper image in motion at the cost of flickering
#define ANTI_GHOSTING 1.0 //[0.0 0.25 0.5 0.75 1.0] High values reduce ghosting but may create flickering
#define FLICKER_REDUCTION 0.75 //[0.0 0.25 0.5 0.75 1.0] High values reduce flickering but may reduce sharpness
#define CLOSEST_VELOCITY //improves edge quality in motion at the cost of performance
const int noiseTextureResolution = 32;
/*
const int colortex0Format = RGBA16F; // low res clouds (deferred->composite2) + low res VL (composite5->composite15)
const int colortex1Format = RGBA16; //terrain gbuffer (gbuffer->composite2)
const int colortex2Format = RGBA16F; //forward + transparencies (gbuffer->composite4)
const int colortex3Format = R11F_G11F_B10F; //frame buffer + bloom (deferred6->final)
const int colortex4Format = RGBA16F; //light values and skyboxes (everything)
const int colortex5Format = R11F_G11F_B10F; //TAA buffer (everything)
const int colortex6Format = R11F_G11F_B10F; //additionnal buffer for bloom (composite3->final)
const int colortex7Format = RGBA8; //Final output, transparencies id (gbuffer->composite4)
*/
//no need to clear the buffers, saves a few fps
const bool colortex0Clear = false;
const bool colortex1Clear = false;
const bool colortex2Clear = true;
const bool colortex3Clear = false;
const bool colortex4Clear = false;
const bool colortex5Clear = false;
const bool colortex6Clear = false;
const bool colortex7Clear = false;
varying vec2 texcoord;
flat varying float exposureA;
flat varying float tempOffsets;
uniform sampler2D colortex3;
uniform sampler2D colortex5;
uniform sampler2D depthtex0;
uniform vec2 texelSize;
uniform float frameTimeCounter;
uniform float viewHeight;
uniform float viewWidth;
uniform vec3 previousCameraPosition;
uniform mat4 gbufferPreviousModelView;
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
#include "lib/projections.glsl"
float luma(vec3 color) {
return dot(color,vec3(0.21, 0.72, 0.07));
}
float interleaved_gradientNoise(){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+tempOffsets);
}
float triangularize(float dither)
{
float center = dither*2.0-1.0;
dither = center*inversesqrt(abs(center));
return clamp(dither-fsign(center),0.0,1.0);
}
vec3 fp10Dither(vec3 color,float dither){
const vec3 mantissaBits = vec3(6.,6.,5.);
vec3 exponent = floor(log2(color));
return color + dither*exp2(-mantissaBits)*exp2(exponent);
}
//returns the projected coordinates of the closest point to the camera in the 3x3 neighborhood
vec3 closestToCamera3x3()
{
vec2 du = vec2(texelSize.x, 0.0);
vec2 dv = vec2(0.0, texelSize.y);
vec3 dtl = vec3(texcoord,0.) + vec3(-texelSize, texture2D(depthtex0, texcoord - dv - du).x);
vec3 dtc = vec3(texcoord,0.) + vec3( 0.0, -texelSize.y, texture2D(depthtex0, texcoord - dv).x);
vec3 dtr = vec3(texcoord,0.) + vec3( texelSize.x, -texelSize.y, texture2D(depthtex0, texcoord - dv + du).x);
vec3 dml = vec3(texcoord,0.) + vec3(-texelSize.x, 0.0, texture2D(depthtex0, texcoord - du).x);
vec3 dmc = vec3(texcoord,0.) + vec3( 0.0, 0.0, texture2D(depthtex0, texcoord).x);
vec3 dmr = vec3(texcoord,0.) + vec3( texelSize.x, 0.0, texture2D(depthtex0, texcoord + du).x);
vec3 dbl = vec3(texcoord,0.) + vec3(-texelSize.x, texelSize.y, texture2D(depthtex0, texcoord + dv - du).x);
vec3 dbc = vec3(texcoord,0.) + vec3( 0.0, texelSize.y, texture2D(depthtex0, texcoord + dv).x);
vec3 dbr = vec3(texcoord,0.) + vec3( texelSize.x, texelSize.y, texture2D(depthtex0, texcoord + dv + du).x);
vec3 dmin = dmc;
dmin = dmin.z > dtc.z? dtc : dmin;
dmin = dmin.z > dtr.z? dtr : dmin;
dmin = dmin.z > dml.z? dml : dmin;
dmin = dmin.z > dtl.z? dtl : dmin;
dmin = dmin.z > dmr.z? dmr : dmin;
dmin = dmin.z > dbl.z? dbl : dmin;
dmin = dmin.z > dbc.z? dbc : dmin;
dmin = dmin.z > dbr.z? dbr : dmin;
return dmin;
}
//Modified texture interpolation from inigo quilez
vec4 smoothfilter(in sampler2D tex, in vec2 uv)
{
vec2 textureResolution = vec2(viewWidth,viewHeight);
uv = uv*textureResolution + 0.5;
vec2 iuv = floor( uv );
vec2 fuv = fract( uv );
#ifndef SMOOTHESTSTEP_INTERPOLATION
uv = iuv + (fuv*fuv)*(3.0-2.0*fuv);
#endif
#ifdef SMOOTHESTSTEP_INTERPOLATION
uv = iuv + fuv*fuv*fuv*(fuv*(fuv*6.0-15.0)+10.0);
#endif
uv = (uv - 0.5)/textureResolution;
return texture2D( tex, uv);
}
//Due to low sample count we "tonemap" the inputs to preserve colors and smoother edges
vec3 weightedSample(sampler2D colorTex, vec2 texcoord){
vec3 wsample = texture2D(colorTex,texcoord).rgb*exposureA;
return wsample/(1.0+luma(wsample));
}
//from : https://gist.github.com/TheRealMJP/c83b8c0f46b63f3a88a5986f4fa982b1
vec4 SampleTextureCatmullRom(sampler2D tex, vec2 uv, vec2 texSize )
{
// We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding
// down the sample location to get the exact center of our "starting" texel. The starting texel will be at
// location [1, 1] in the grid, where [0, 0] is the top left corner.
vec2 samplePos = uv * texSize;
vec2 texPos1 = floor(samplePos - 0.5) + 0.5;
// Compute the fractional offset from our starting texel to our original sample location, which we'll
// feed into the Catmull-Rom spline function to get our filter weights.
vec2 f = samplePos - texPos1;
// Compute the Catmull-Rom weights using the fractional offset that we calculated earlier.
// These equations are pre-expanded based on our knowledge of where the texels will be located,
// which lets us avoid having to evaluate a piece-wise function.
vec2 w0 = f * ( -0.5 + f * (1.0 - 0.5*f));
vec2 w1 = 1.0 + f * f * (-2.5 + 1.5*f);
vec2 w2 = f * ( 0.5 + f * (2.0 - 1.5*f) );
vec2 w3 = f * f * (-0.5 + 0.5 * f);
// Work out weighting factors and sampling offsets that will let us use bilinear filtering to
// simultaneously evaluate the middle 2 samples from the 4x4 grid.
vec2 w12 = w1 + w2;
vec2 offset12 = w2 / (w1 + w2);
// Compute the final UV coordinates we'll use for sampling the texture
vec2 texPos0 = texPos1 - vec2(1.0);
vec2 texPos3 = texPos1 + vec2(2.0);
vec2 texPos12 = texPos1 + offset12;
texPos0 *= texelSize;
texPos3 *= texelSize;
texPos12 *= texelSize;
vec4 result = vec4(0.0);
result += texture2D(tex, vec2(texPos0.x, texPos0.y)) * w0.x * w0.y;
result += texture2D(tex, vec2(texPos12.x, texPos0.y)) * w12.x * w0.y;
result += texture2D(tex, vec2(texPos3.x, texPos0.y)) * w3.x * w0.y;
result += texture2D(tex, vec2(texPos0.x, texPos12.y)) * w0.x * w12.y;
result += texture2D(tex, vec2(texPos12.x, texPos12.y)) * w12.x * w12.y;
result += texture2D(tex, vec2(texPos3.x, texPos12.y)) * w3.x * w12.y;
result += texture2D(tex, vec2(texPos0.x, texPos3.y)) * w0.x * w3.y;
result += texture2D(tex, vec2(texPos12.x, texPos3.y)) * w12.x * w3.y;
result += texture2D(tex, vec2(texPos3.x, texPos3.y)) * w3.x * w3.y;
return result;
}
//approximation from SMAA presentation from siggraph 2016
vec3 FastCatmulRom(sampler2D colorTex, vec2 texcoord, vec4 rtMetrics, float sharpenAmount)
{
vec2 position = rtMetrics.zw * texcoord;
vec2 centerPosition = floor(position - 0.5) + 0.5;
vec2 f = position - centerPosition;
vec2 f2 = f * f;
vec2 f3 = f * f2;
float c = sharpenAmount;
vec2 w0 = -c * f3 + 2.0 * c * f2 - c * f;
vec2 w1 = (2.0 - c) * f3 - (3.0 - c) * f2 + 1.0;
vec2 w2 = -(2.0 - c) * f3 + (3.0 - 2.0 * c) * f2 + c * f;
vec2 w3 = c * f3 - c * f2;
vec2 w12 = w1 + w2;
vec2 tc12 = rtMetrics.xy * (centerPosition + w2 / w12);
vec3 centerColor = texture2D(colorTex, vec2(tc12.x, tc12.y)).rgb;
vec2 tc0 = rtMetrics.xy * (centerPosition - 1.0);
vec2 tc3 = rtMetrics.xy * (centerPosition + 2.0);
vec4 color = vec4(texture2D(colorTex, vec2(tc12.x, tc0.y )).rgb, 1.0) * (w12.x * w0.y ) +
vec4(texture2D(colorTex, vec2(tc0.x, tc12.y)).rgb, 1.0) * (w0.x * w12.y) +
vec4(centerColor, 1.0) * (w12.x * w12.y) +
vec4(texture2D(colorTex, vec2(tc3.x, tc12.y)).rgb, 1.0) * (w3.x * w12.y) +
vec4(texture2D(colorTex, vec2(tc12.x, tc3.y )).rgb, 1.0) * (w12.x * w3.y );
return color.rgb/color.a;
}
vec3 clip_aabb(vec3 q,vec3 aabb_min, vec3 aabb_max)
{
vec3 p_clip = 0.5 * (aabb_max + aabb_min);
vec3 e_clip = 0.5 * (aabb_max - aabb_min) + 0.00000001;
vec3 v_clip = q - vec3(p_clip);
vec3 v_unit = v_clip.xyz / e_clip;
vec3 a_unit = abs(v_unit);
float ma_unit = max(a_unit.x, max(a_unit.y, a_unit.z));
if (ma_unit > 1.0)
return vec3(p_clip) + v_clip / ma_unit;
else
return q;
}
vec3 toClipSpace3Prev(vec3 viewSpacePosition) {
return projMAD(gbufferPreviousProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
}
vec3 TAA_hq(){
//use velocity from the nearest texel from camera in a 3x3 box in order to improve edge quality in motion
#ifdef CLOSEST_VELOCITY
vec3 closestToCamera = closestToCamera3x3();
#endif
#ifndef CLOSEST_VELOCITY
vec3 closestToCamera = vec3(texcoord,texture2D(depthtex0,texcoord).x);
#endif
//reproject previous frame
vec3 fragposition = toScreenSpace(closestToCamera);
fragposition = mat3(gbufferModelViewInverse) * fragposition + gbufferModelViewInverse[3].xyz + (cameraPosition - previousCameraPosition);
vec3 previousPosition = mat3(gbufferPreviousModelView) * fragposition + gbufferPreviousModelView[3].xyz;
previousPosition = toClipSpace3Prev(previousPosition);
vec2 velocity = previousPosition.xy - closestToCamera.xy;
previousPosition.xy = texcoord + velocity;
//to reduce error propagation caused by interpolation during history resampling, we will introduce back some aliasing in motion
vec2 d = 0.5-abs(fract(previousPosition.xy*vec2(viewWidth,viewHeight)-texcoord*vec2(viewWidth,viewHeight))-0.5);
float mixFactor = dot(d,d);
float rej = mixFactor*MOTION_REJECTION;
//reject history if off-screen and early exit
if (previousPosition.x < 0.0 || previousPosition.y < 0.0 || previousPosition.x > 1.0 || previousPosition.y > 1.0) return texture2D(colortex3, texcoord).rgb;
//Samples current frame 3x3 neighboorhood
vec3 albedoCurrent0 = texture2D(colortex3, texcoord).rgb;
vec3 albedoCurrent1 = texture2D(colortex3, texcoord + vec2(texelSize.x,texelSize.y)).rgb;
vec3 albedoCurrent2 = texture2D(colortex3, texcoord + vec2(texelSize.x,-texelSize.y)).rgb;
vec3 albedoCurrent3 = texture2D(colortex3, texcoord + vec2(-texelSize.x,-texelSize.y)).rgb;
vec3 albedoCurrent4 = texture2D(colortex3, texcoord + vec2(-texelSize.x,texelSize.y)).rgb;
vec3 albedoCurrent5 = texture2D(colortex3, texcoord + vec2(0.0,texelSize.y)).rgb;
vec3 albedoCurrent6 = texture2D(colortex3, texcoord + vec2(0.0,-texelSize.y)).rgb;
vec3 albedoCurrent7 = texture2D(colortex3, texcoord + vec2(-texelSize.x,0.0)).rgb;
vec3 albedoCurrent8 = texture2D(colortex3, texcoord + vec2(texelSize.x,0.0)).rgb;
#ifndef NO_CLIP
//Assuming the history color is a blend of the 3x3 neighborhood, we clamp the history to the min and max of each channel in the 3x3 neighborhood
vec3 cMax = max(max(max(albedoCurrent0,albedoCurrent1),albedoCurrent2),max(albedoCurrent3,max(albedoCurrent4,max(albedoCurrent5,max(albedoCurrent6,max(albedoCurrent7,albedoCurrent8))))));
vec3 cMin = min(min(min(albedoCurrent0,albedoCurrent1),albedoCurrent2),min(albedoCurrent3,min(albedoCurrent4,min(albedoCurrent5,min(albedoCurrent6,min(albedoCurrent7,albedoCurrent8))))));
vec3 albedoPrev = FastCatmulRom(colortex5, previousPosition.xy,vec4(texelSize, 1.0/texelSize), 0.82).xyz;
vec3 finalcAcc = clamp(albedoPrev,cMin,cMax);
//increases blending factor if history is far away from aabb, reduces ghosting at the cost of some flickering
float isclamped = distance(albedoPrev,finalcAcc)/luma(albedoPrev);
//reduces blending factor if current texel is far from history, reduces flickering
float lumDiff2 = distance(albedoPrev,albedoCurrent0)/luma(albedoPrev);
lumDiff2 = 1.0-clamp(lumDiff2*lumDiff2,0.,1.)*FLICKER_REDUCTION;
//Blend current pixel with clamped history
vec3 supersampled = mix(finalcAcc,albedoCurrent0,clamp(BLEND_FACTOR*lumDiff2+rej+isclamped*ANTI_GHOSTING+0.01,0.,1.));
#endif
#ifdef NO_CLIP
vec3 albedoPrev = texture2D(colortex5, previousPosition.xy).xyz;
vec3 supersampled = mix(albedoPrev,albedoCurrent0,clamp(0.05,0.,1.));
#endif
//De-tonemap
return supersampled;
}
void main() {
/* DRAWBUFFERS:5 */
gl_FragData[0].a = 1.0;
#ifdef TAA
vec3 color = TAA_hq();
gl_FragData[0].rgb = clamp(fp10Dither(color,triangularize(interleaved_gradientNoise())),6.11*1e-5,65000.0);
#endif
#ifndef TAA
vec3 color = clamp(fp10Dither(texture2D(colortex3,texcoord).rgb,triangularize(interleaved_gradientNoise())),0.,65000.);
gl_FragData[0].rgb = color;
#endif
}