Bliss-Shader/shaders/lib/volumetricFog.glsl
Xonk 216db6b84d Latest Dev
its very scary to look at
2023-01-12 15:28:19 -05:00

162 lines
5.7 KiB
GLSL

float luma(vec3 color) {
return dot(color,vec3(0.299, 0.587, 0.114));
}
float phaseRayleigh(float cosTheta) {
const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0);
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
}
// #define TIMEOFDAYFOG
// #include "/lib/climate_settings.glsl"
// uniform int worldTime;
// void TimeOfDayFog( inout float Uniform, inout float Cloudy) {
// float Time = (worldTime%24000)*1.0;
// // set schedules for fog to appear at specific ranges of time in the day.
// float Morning = clamp((Time-22000)/2000,0,1) + clamp((2000-Time)/2000,0,1);
// float Noon = clamp(Time/2000,0,1) * clamp((12000-Time)/2000,0,1);
// float Evening = clamp((Time-10000)/2000,0,1) * clamp((14000-Time)/2000,0,1) ;
// float Night = clamp((Time-12000)/2000,0,1) * clamp((23000-Time)/2000,0,1) ;
// vec4 UniformDensity = vec4(0, 55, 0, 0);
// vec4 CloudyDensity = vec4(0, 0, 0, 0);
// Uniform *= Morning*UniformDensity.r + Noon*UniformDensity.g + Evening*UniformDensity.b + Night*UniformDensity.a;
// Cloudy *= Morning*CloudyDensity.r + Noon*CloudyDensity.g + Evening*CloudyDensity.b + Night*CloudyDensity.a;
// }
float cloudVol(in vec3 pos){
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
float mult = exp2( -max((pos.y - SEA_LEVEL) / 35.,0.0));
float fog_shape = 1-densityAtPos(samplePos * 24.0);
float fog_eroded = densityAtPos( samplePos2 * 150.0);
float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.4, 0.0) * mult;
float UniformFog = exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0));
float RainFog = max(fog_shape*10. - 7.,0.5) * exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)) * 5. * rainStrength;
TimeOfDayFog(UniformFog, CloudyFog);
return RainFog + CloudyFog + UniformFog;
}
mat2x3 getVolumetricRays(
float dither,
vec3 fragpos
){
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.));
//rayvector into projected shadow map space
//we can use a projected vector because its orthographic projection
//however we still have to send it to curved shadow map space every step
vec3 dV = fragposition-start;
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
float maxLength = min(length(dVWorld),far)/length(dVWorld);
dV *= maxLength;
dVWorld *= maxLength;
//apply dither
vec3 progress = start.xyz;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
vec3 vL = vec3(0.);
float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a;
float dL = length(dVWorld);
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
float mie = phaseg(SdotV,0.7)*5.0 + 1.0;
float rayL = phaseRayleigh(SdotV);
// Makes fog more white idk how to simulate it correctly
vec3 sunColor = lightCol.rgb / 5.0;
vec3 skyCol0 = (ambientUp / 5.0 * 5.); // * max(abs(WsunVec.y)/150.0,0.);
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
float mu = 1.0;
float muS = mu;
vec3 absorbance = vec3(1.0);
float expFactor = 11.0;
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
float cloudShadow = 1.0;
for (int i=0;i<VL_SAMPLES2;i++) {
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES2))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES2)) * log(expFactor) / float(VL_SAMPLES2)/(expFactor-1.0);
progress = start.xyz + d*dV;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
//project into biased shadowmap space
float distortFactor = calcDistort(progress.xy);
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
float densityVol = cloudVol(progressW);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D( shadow, pos).x;
}
#ifdef VOLUMETRIC_CLOUDS
#ifdef CLOUDS_SHADOWS
#ifdef VL_CLOUDS_SHADOWS
float max_height = clamp(400.0 - progressW.y, 0.0,1.0); // so it doesnt go beyond the height of the clouds
vec3 campos = (progressW)-319;
// get cloud position
vec3 cloudPos = campos*Cloud_Size + WsunVec/abs(WsunVec.y) * (2250 - campos.y*Cloud_Size);
// get the cloud density and apply it
cloudShadow = getCloudDensity(cloudPos, 1);
cloudShadow = exp(-cloudShadow*cloudDensity*200);
cloudShadow *= max_height;
// cloudShadow *= 1000; //debug
#endif
#endif
#endif
//Water droplets(fog)
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
//Just air
vec2 airCoef = exp(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 16;
//Pbr for air, yolo mix between mie and rayleigh for water droplets
vec3 rL = rC*airCoef.x;
vec3 m = (airCoef.y+density)*mC;
vec3 rainRays = (sunColor*sh*cloudShadow) * (rayL*phaseg(SdotV,0.6)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength;
vec3 DirectLight = (sunColor*sh*cloudShadow) * (rayL*rL+m*mie);
vec3 AmbientLight = skyCol0 * m;
vec3 AtmosphericFog = skyCol0 * (rL+m) ;
vec3 vL0 = (DirectLight +AmbientLight+AtmosphericFog + rainRays) * max(eyeBrightnessSmooth.y,0)/240.;
#ifdef Biome_specific_environment
BiomeFogColor(vL0);
#endif
vL += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0);
}
return mat2x3(vL,absorbance);
}