435 lines
14 KiB
GLSL

#include "/lib/settings.glsl"
flat varying vec4 lightCol;
flat varying vec3 averageSkyCol;
flat varying vec3 averageSkyCol_Clouds;
uniform sampler2D noisetex;
uniform sampler2D depthtex0;
uniform sampler2D depthtex1;
#ifdef DISTANT_HORIZONS
uniform sampler2D dhDepthTex;
uniform sampler2D dhDepthTex1;
#endif
uniform sampler2D colortex0;
uniform sampler2D colortex2;
uniform sampler2D colortex3;
// uniform sampler2D colortex4;
uniform sampler2D colortex6;
uniform sampler2D colortex7;
flat varying vec3 WsunVec;
uniform vec3 sunVec;
uniform float sunElevation;
// uniform float far;
uniform float dhFarPlane;
uniform float dhNearPlane;
uniform int frameCounter;
uniform float frameTimeCounter;
// varying vec2 texcoord;
uniform vec2 texelSize;
// flat varying vec2 TAA_Offset;
uniform int isEyeInWater;
uniform float rainStrength;
uniform ivec2 eyeBrightnessSmooth;
uniform float eyeAltitude;
uniform float caveDetection;
#define DHVLFOG
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
#include "/lib/color_transforms.glsl"
#include "/lib/color_dither.glsl"
#include "/lib/projections.glsl"
#include "/lib/res_params.glsl"
#include "/lib/sky_gradient.glsl"
#include "/lib/Shadow_Params.glsl"
#include "/lib/waterBump.glsl"
#include "/lib/DistantHorizons_projections.glsl"
float DH_ld(float dist) {
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
}
float DH_inv_ld (float lindepth){
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
}
float linearizeDepthFast(const in float depth, const in float near, const in float far) {
return (near * far) / (depth * (near - far) + far);
}
#ifdef OVERWORLD_SHADER
const bool shadowHardwareFiltering = true;
uniform sampler2DShadow shadow;
#ifdef TRANSLUCENT_COLORED_SHADOWS
uniform sampler2D shadowcolor0;
uniform sampler2DShadow shadowtex0;
uniform sampler2DShadow shadowtex1;
#endif
flat varying vec3 refractedSunVec;
#define TIMEOFDAYFOG
#include "/lib/lightning_stuff.glsl"
#include "/lib/volumetricClouds.glsl"
// #define CLOUDS_INTERSECT_TERRAIN
#include "/lib/overworld_fog.glsl"
#endif
#ifdef NETHER_SHADER
uniform sampler2D colortex4;
#include "/lib/nether_fog.glsl"
#endif
#ifdef END_SHADER
uniform sampler2D colortex4;
#include "/lib/end_fog.glsl"
#endif
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
float interleaved_gradientNoise_temporal(){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
// float interleaved_gradientNoise(){
// return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter);
// }
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter );
}
float R2_dither(){
#ifdef TAA
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
#else
vec2 coord = gl_FragCoord.xy;
#endif
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
}
void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
int spCount = rayMarchSampleCount;
vec3 start = toShadowSpaceProjected(rayStart);
vec3 end = toShadowSpaceProjected(rayEnd);
vec3 dV = (end-start);
//limit ray length at 32 blocks for performance and reducing integration error
//you can't see above this anyway
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
dV *= maxZ;
rayLength *= maxZ;
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
estEndDepth *= maxZ;
estSunDepth *= maxZ;
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
vec3 absorbance = vec3(1.0);
vec3 vL = vec3(0.0);
float expFactor = 11.0;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
vec3 spPos = start.xyz + dV*d;
vec3 progressW = start.xyz+cameraPosition+dVWorld;
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs );
vec3 Indirectlight = ambientMul*ambient;
vec3 light = Indirectlight * scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
absorbance *= exp(-dd * rayLength * waterCoefs);
}
inColor += vL;
}
// #ifdef OVERWORLD_SHADER
// vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
// int spCount = rayMarchSampleCount;
// vec3 start = toShadowSpaceProjected(rayStart);
// vec3 end = toShadowSpaceProjected(rayEnd);
// vec3 dV = (end-start);
// //limit ray length at 32 blocks for performance and reducing integration error
// //you can't see above this anyway
// float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
// dV *= maxZ;
// rayLength *= maxZ;
// estEndDepth *= maxZ;
// estSunDepth *= maxZ;
// vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
// vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
// vec3 newabsorbance = exp(-rayLength * waterCoefs); // No need to take the integrated value
// float phase = fogPhase(VdotL) * 5.0;
// vec3 absorbance = vec3(1.0);
// vec3 vL = vec3(0.0);
// float expFactor = 11.0;
// for (int i=0;i<spCount;i++) {
// float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
// float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
// vec3 spPos = start.xyz + dV*d;
// vec3 progressW = start.xyz+cameraPosition+dVWorld;
// //project into biased shadowmap space
// #ifdef DISTORT_SHADOWMAP
// float distortFactor = calcDistort(spPos.xy);
// #else
// float distortFactor = 1.0;
// #endif
// vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
// float sh = 1.0;
// if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
// pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
// sh = shadow2D( shadow, pos).x;
// }
// #ifdef VL_CLOUDS_SHADOWS
// sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
// #endif
// vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1);
// vec3 ambientMul = exp(-estEndDepth * d * waterCoefs );
// vec3 Directlight = (lightSource * phase * sunMul) * sh;
// // vec3 Indirectlight = ambient * ambientMul;
// vec3 Indirectlight = max(ambient * ambientMul, vec3(0.01,0.2,0.4) * ambientMul * 0.1) ;
// vec3 light = (Indirectlight + Directlight) * scatterCoef;
// vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
// absorbance *= exp(-waterCoefs * dd * rayLength);
// }
// // inColor += vL;
// return vec4( vL, dot(newabsorbance,vec3(0.335)));
// }
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
int spCount = 8;
vec3 start = toShadowSpaceProjected(rayStart);
vec3 end = toShadowSpaceProjected(rayEnd);
vec3 dV = (end-start);
//limit ray length at 32 blocks for performance and reducing integration error
//you can't see above this anyway
float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
dV *= maxZ;
vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
rayLength *= maxZ;
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
#ifdef OVERWORLD_SHADER
float phase = fogPhase(VdotL) * 5.0;
#endif
vec3 absorbance = vec3(1.0);
vec3 vL = vec3(0.0);
float YFade = pow(normalize(dVWorld).y*0.3+0.7,1.5);
#ifdef OVERWORLD_SHADER
float lowlightlevel = clamp(eyeBrightnessSmooth.y/240.0,0.1,1.0);
#else
float lowlightlevel = 1.0;
#endif
// lowlightlevel = pow(lowlightlevel,0.5);
float expFactor = 11.0;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
vec3 sh = vec3(1.0);
#ifdef OVERWORLD_SHADER
vec3 spPos = start.xyz + dV*d;
//project into biased shadowmap space
#ifdef DISTORT_SHADOWMAP
float distortFactor = calcDistort(spPos.xy);
#else
float distortFactor = 1.0;
#endif
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
// sh = shadow2D( shadow, pos).x;
#ifdef TRANSLUCENT_COLORED_SHADOWS
sh = vec3(shadow2D(shadowtex0, pos).x);
if(shadow2D(shadowtex1, pos).x > pos.z && sh.x < 1.0){
sh = normalize(texture2D(shadowcolor0, pos.xy).rgb+0.0001);
}
#else
sh = vec3(shadow2D(shadow, pos).x);
#endif
}
#ifdef VL_CLOUDS_SHADOWS
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
#endif
// float bubble = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - length(d*dVWorld) / (16),0.0)*5.0,1.0),2.0),2.0);
float bubble = exp( -7.0 * clamp(1.0 - length(d*dVWorld) / 16.0, 0.0,1.0) );
float bubble2 = max(pow(length(d*dVWorld)/24,5)*100.0,0.0) + 1;
float sunCaustics = (waterCaustics(progressW, WsunVec)) * mix(0.25,10.0,bubble) + 0.75;
vec3 sunMul = exp(-1 * d * waterCoefs * 1.1);
vec3 Directlight = ((lightSource* sh) * phase * sunMul * sunCaustics) * lowlightlevel * pow(abs(WsunVec.y),1);
#else
vec3 Directlight = vec3(0.0);
#endif
vec3 ambientMul = exp(-1 * d * waterCoefs);
vec3 Indirectlight = ambient * ambientMul * YFade * lowlightlevel;
vec3 light = (Indirectlight + Directlight) * scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
absorbance *= exp(-waterCoefs * dd * rayLength);
}
inColor += vL;
}
// #endif
vec4 blueNoise(vec2 coord){
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
}
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n);
}
float fogPhase2(float lightPoint){
float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
exponential += sqrt(exp2(sqrt(linear) * -12.5));
return exponential;
}
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
void main() {
/* RENDERTARGETS:0 */
float noise_1 = max(1.0 - R2_dither(),0.0015);
float noise_2 = blueNoise();
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
bool iswater = texture2D(colortex7,tc).a > 0.99;
float z0 = texture2D(depthtex0,tc).x;
#ifdef DISTANT_HORIZONS
float DH_z0 = texture2D(dhDepthTex,tc).x;
#else
float DH_z0 = 0.0;
#endif
float z = texture2D(depthtex1,tc).x;
#ifdef DISTANT_HORIZONS
float DH_z = texture2D(dhDepthTex1,tc).x;
#else
float DH_z = 0.0;
#endif
vec3 viewPos1 = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z);
vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0);
vec3 playerPos = normalize(mat3(gbufferModelViewInverse) * viewPos1);
// vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
float dirtAmount = Dirt_Amount + 0.01;
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
vec3 directLightColor = lightCol.rgb/80.0;
vec3 indirectLightColor = averageSkyCol/30.0;
vec3 indirectLightColor_dynamic = averageSkyCol_Clouds/30.0;
#ifdef OVERWORLD_SHADER
vec4 VolumetricFog = GetVolumetricFog(viewPos0, vec2(noise_1,noise_2), directLightColor, indirectLightColor, averageSkyCol_Clouds/30.0);
#endif
#if defined NETHER_SHADER || defined END_SHADER
vec4 VolumetricFog = GetVolumetricFog(viewPos0, noise_1, noise_2);
#endif
#if defined VOLUMETRIC_CLOUDS && defined CLOUDS_INTERSECT_TERRAIN
vec4 Clouds = texture2D(colortex0, (gl_FragCoord.xy*texelSize) / (VL_RENDER_RESOLUTION/CLOUDS_QUALITY));
VolumetricFog.rgb = Clouds.rgb * VolumetricFog.a + VolumetricFog.rgb;
VolumetricFog.a = VolumetricFog.a*Clouds.a;
#endif
gl_FragData[0] = clamp(VolumetricFog, 0.0, 65000.0);
if (isEyeInWater == 1){
float estEyeDepth = clamp(eyeBrightnessSmooth.y/240.0,0.,1.0);
// estEyeDepth = pow(estEyeDepth,3.0) * 32.0;
estEyeDepth = 0.0;
// vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
vec3 vl = vec3(0.0);
waterVolumetrics(vl, vec3(0.0), viewPos0, estEyeDepth, estEyeDepth, length(viewPos0), noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor , dot(normalize(viewPos0), normalize(sunVec* lightCol.a ) ));
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
}
}