mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-04 00:23:41 +08:00
f82426c609
it has begun
272 lines
10 KiB
GLSL
272 lines
10 KiB
GLSL
#version 120
|
|
//Volumetric fog rendering
|
|
#extension GL_EXT_gpu_shader4 : enable
|
|
|
|
#define VL_SAMPLES 8 //[4 6 8 10 12 14 16 20 24 30 40 50]
|
|
#define Ambient_Mult 1.0 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.5 2.0 3.0 4.0 5.0 6.0 10.0]
|
|
#define SEA_LEVEL 70 //[0 10 20 30 40 50 60 70 80 90 100 110 120 130 150 170 190] //The volumetric light uses an altitude-based fog density, this is where fog density is the highest, adjust this value according to your world.
|
|
#define ATMOSPHERIC_DENSITY 1.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 7.5 10.0 12.5 15.0 20.]
|
|
#define fog_mieg1 0.40 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0]
|
|
#define fog_mieg2 0.10 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0]
|
|
#define fog_coefficientRayleighR 5.8 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
|
|
#define fog_coefficientRayleighG 1.35 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
|
|
#define fog_coefficientRayleighB 3.31 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
|
|
|
|
#define fog_coefficientMieR 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
|
|
#define fog_coefficientMieG 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
|
|
#define fog_coefficientMieB 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
|
|
|
|
#define Underwater_Fog_Density 1.0 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.5 2.0 3.0 4.0]
|
|
|
|
flat varying vec4 lightCol;
|
|
flat varying vec3 ambientUp;
|
|
flat varying vec3 ambientLeft;
|
|
flat varying vec3 ambientRight;
|
|
flat varying vec3 ambientB;
|
|
flat varying vec3 ambientF;
|
|
flat varying vec3 ambientDown;
|
|
flat varying float tempOffsets;
|
|
flat varying float fogAmount;
|
|
flat varying float VFAmount;
|
|
uniform sampler2D noisetex;
|
|
uniform sampler2D depthtex0;
|
|
|
|
|
|
uniform sampler2D colortex2;
|
|
uniform sampler2D colortex3;
|
|
uniform sampler2D colortex4;
|
|
|
|
uniform vec3 sunVec;
|
|
uniform float far;
|
|
uniform int frameCounter;
|
|
uniform float rainStrength;
|
|
uniform float sunElevation;
|
|
uniform ivec2 eyeBrightnessSmooth;
|
|
uniform float frameTimeCounter;
|
|
uniform int isEyeInWater;
|
|
uniform vec2 texelSize;
|
|
|
|
|
|
uniform float isWastes;
|
|
uniform float isWarpedForest;
|
|
uniform float isCrimsonForest;
|
|
uniform float isSoulValley;
|
|
uniform float isBasaltDelta;
|
|
|
|
|
|
#include "lib/waterOptions.glsl"
|
|
#include "lib/color_transforms.glsl"
|
|
#include "lib/color_dither.glsl"
|
|
#include "lib/projections.glsl"
|
|
#include "lib/sky_gradient.glsl"
|
|
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
|
|
|
float interleaved_gradientNoise(){
|
|
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+tempOffsets);
|
|
}
|
|
|
|
|
|
float phaseg(float x, float g){
|
|
float gg = g * g;
|
|
return (gg * -0.25 + 0.25) * pow(-2.0 * (g * x) + (gg + 1.0), -1.5) /3.14;
|
|
}
|
|
float phaseRayleigh(float cosTheta) {
|
|
const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0);
|
|
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
|
|
}
|
|
|
|
float densityAtPos(in vec3 pos)
|
|
{
|
|
|
|
pos /= 18.;
|
|
pos.xz *= 0.5;
|
|
|
|
|
|
vec3 p = floor(pos);
|
|
vec3 f = fract(pos);
|
|
|
|
f = (f*f) * (3.-2.*f);
|
|
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
|
|
vec2 coord = uv / 512.0;
|
|
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
|
|
return mix(xy.r,xy.g, f.y);
|
|
}
|
|
// float cloudVol(in vec3 pos){
|
|
|
|
// vec3 samplePos = pos*vec3(1.0,1./32.,1.0)*5.0+frameTimeCounter*vec3(0.5,0.,0.5)*1.;
|
|
// float noise = densityAtPos(samplePos*12.);
|
|
// float unifCov = exp2(-max(pos.y-SEA_LEVEL,0.0)/50.);
|
|
|
|
// float cloud = pow(clamp(1.0-noise-0.76,0.0,1.0),2.)+0.005;
|
|
|
|
// return cloud;
|
|
// }
|
|
|
|
float cloudVol(in vec3 pos){
|
|
|
|
// float[4] BiomeParams = float[4](
|
|
// /*[0] Cloudy amount */ isWastes*5 + isWarpedForest*0 + isCrimsonForest*0 + isSoulValley + isBasaltDelta*2
|
|
// /*[1] uniform amount*/ ,isWastes*0 + isWarpedForest*0.005 + isCrimsonForest*0.005 + isSoulValley*0.5 + isBasaltDelta*0
|
|
// /*[2] uniform height*/ ,isWastes*3 + isWarpedForest*100 + isCrimsonForest*100 + isSoulValley*2 + isBasaltDelta
|
|
// /*[3] cloudy height*/ ,isWastes*20 + isWarpedForest + isCrimsonForest + isSoulValley*100 + isBasaltDelta*100
|
|
// );
|
|
|
|
// cloudy fog shapes
|
|
vec3 samplePos = pos*vec3(1.0,1./48.,1.0);
|
|
|
|
samplePos.x += frameTimeCounter*2.0;
|
|
float cloudy_fog_erosion = densityAtPos(samplePos * 200.0);
|
|
|
|
samplePos += cloudy_fog_erosion;
|
|
|
|
samplePos.y -= frameTimeCounter*0.2;
|
|
float main_cloudy_fog = densityAtPos(samplePos * 50.0);
|
|
|
|
float final = main_cloudy_fog/100.0;
|
|
return final;
|
|
}
|
|
|
|
mat2x3 getVolumetricRays(float dither,vec3 fragpos) {
|
|
|
|
//project pixel position into projected shadowmap space
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
|
|
|
|
//project view origin into projected shadowmap space
|
|
vec3 start = toShadowSpaceProjected(vec3(0.));
|
|
|
|
|
|
//rayvector into projected shadow map space
|
|
//we can use a projected vector because its orthographic projection
|
|
//however we still have to send it to curved shadow map space every step
|
|
vec3 dV = (fragposition-start);
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
float maxLength = min(length(dVWorld),far)/length(dVWorld);
|
|
dV *= maxLength;
|
|
dVWorld *= maxLength;
|
|
|
|
//apply dither
|
|
vec3 progress = start.xyz;
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
|
vec3 vL = vec3(0.);
|
|
|
|
float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a;
|
|
float dL = length(dVWorld);
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
float mie = max(phaseg(SdotV,fog_mieg1),1.0/13.0);
|
|
float rayL = phaseRayleigh(SdotV);
|
|
// wpos.y = clamp(wpos.y,0.0,1.0);
|
|
|
|
vec3 ambientCoefs = dVWorld/dot(abs(dVWorld),vec3(1.));
|
|
|
|
vec3 ambientLight = ambientUp;
|
|
ambientLight += ambientDown;
|
|
ambientLight += ambientRight;
|
|
ambientLight += ambientLeft;
|
|
ambientLight += ambientB;
|
|
ambientLight += ambientF;
|
|
|
|
vec3 skyCol0 = ambientLight*8.*2./150./3.*Ambient_Mult*3.1415;
|
|
|
|
float mu = 1.0;
|
|
float muS = 1.05;
|
|
vec3 absorbance = vec3(1.0);
|
|
float expFactor = 11.0;
|
|
|
|
vec3 fogColor = clamp(gl_Fog.color.rgb*pow(luma(gl_Fog.color.rgb),-0.75)*0.65,0.0,1.0)*0.05;
|
|
|
|
// float testcolor = clamp(exp2(-max(progressW.y-25,0.0)/5) ,0,1);
|
|
// fogColor = mix(fogColor, vec3(0,1,0), testcolor);
|
|
|
|
for (int i=0;i<VL_SAMPLES+10;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES+10))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES+10)) * log(expFactor) / float(VL_SAMPLES+10)/(expFactor-1.0);
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
float densityVol = cloudVol(progressW)*2.0;
|
|
float density = densityVol;
|
|
vec3 vL0 = density*fogColor;
|
|
vL += (vL0 - vL0 * exp(-density*mu*dd*dL)) / (density*mu+0.00000001)*absorbance;
|
|
absorbance *= clamp(exp(-density*mu*dd*dL),0.0,1.0);
|
|
}
|
|
return mat2x3(vL,absorbance);
|
|
|
|
|
|
|
|
}
|
|
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
|
int spCount = 16;
|
|
|
|
vec3 start = toShadowSpaceProjected(rayStart);
|
|
vec3 end = toShadowSpaceProjected(rayEnd);
|
|
vec3 dV = (end-start);
|
|
//limit ray length at 32 blocks for performance and reducing integration error
|
|
//you can't see above this anyway
|
|
float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
|
|
dV *= maxZ;
|
|
rayLength *= maxZ;
|
|
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
|
vec3 absorbance = vec3(1.0);
|
|
vec3 vL = vec3(0.0);
|
|
float phase = phaseg(VdotL, Dirt_Mie_Phase);
|
|
float expFactor = 11.0;
|
|
for (int i=0;i<spCount;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
|
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
|
vec3 spPos = start.xyz + dV*d;
|
|
vec3 ambientMul = exp(-max(estEyeDepth - dY * d,0.0) * waterCoefs * 1.1);
|
|
vec3 light = (ambientMul*ambient )*scatterCoef;
|
|
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
|
|
absorbance *= exp(-dd * rayLength * waterCoefs);
|
|
}
|
|
inColor += vL;
|
|
}
|
|
float blueNoise(){
|
|
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
|
}
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
|
|
void main() {
|
|
/* DRAWBUFFERS:0 */
|
|
if (isEyeInWater == 0){
|
|
vec2 tc = floor(gl_FragCoord.xy)*2.0*texelSize+0.5*texelSize;
|
|
float z = texture2D(depthtex0,tc).x;
|
|
vec3 fragpos = toScreenSpace(vec3(tc,z));
|
|
float noise = blueNoise();
|
|
mat2x3 vl = getVolumetricRays(noise,fragpos);
|
|
float absorbance = dot(vl[1],vec3(0.22,0.71,0.07));
|
|
gl_FragData[0] = clamp(vec4(vl[0],absorbance),0.000001,65000.);
|
|
}
|
|
else {
|
|
float dirtAmount = Dirt_Amount;
|
|
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
|
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
|
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
|
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / pi;
|
|
vec2 tc = floor(gl_FragCoord.xy)*2.0*texelSize+0.5*texelSize;
|
|
float z = texture2D(depthtex0,tc).x;
|
|
vec3 fragpos = toScreenSpace(vec3(tc,z));
|
|
float noise=blueNoise();
|
|
vec3 vl = vec3(0.0);
|
|
float estEyeDepth = clamp((14.0-eyeBrightnessSmooth.y/255.0*16.0)/14.0,0.,1.0);
|
|
estEyeDepth *= estEyeDepth*estEyeDepth*34.0;
|
|
#ifndef lightMapDepthEstimation
|
|
estEyeDepth = max(Water_Top_Layer - cameraPosition.y,0.0);
|
|
#endif
|
|
waterVolumetrics(vl, vec3(0.0), fragpos, estEyeDepth, estEyeDepth, length(fragpos), noise, totEpsilon, scatterCoef, ambientUp*8./150./3.*0.84*2.0/pi, lightCol.rgb*8./150./3.0*(0.91-pow(1.0-sunElevation,5.0)*0.86), dot(normalize(fragpos), normalize(sunVec)));
|
|
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
|
|
}
|
|
|
|
}
|