mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2024-12-23 01:59:39 +08:00
4e8d9df909
teensie
1144 lines
37 KiB
GLSL
1144 lines
37 KiB
GLSL
#version 120
|
|
//Render sky, volumetric clouds, direct lighting
|
|
#extension GL_EXT_gpu_shader4 : enable
|
|
|
|
#include "lib/settings.glsl"
|
|
|
|
const bool colortex5MipmapEnabled = true;
|
|
const bool colortex12MipmapEnabled = true;
|
|
// const bool colortex4MipmapEnabled = true;
|
|
|
|
const bool shadowHardwareFiltering = true;
|
|
flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon)
|
|
flat varying vec3 avgAmbient;
|
|
flat varying vec3 WsunVec;
|
|
flat varying vec2 TAA_Offset;
|
|
flat varying float tempOffsets;
|
|
|
|
|
|
uniform float eyeAltitude;
|
|
|
|
/*
|
|
const int colortex12Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
|
|
const int colortex15Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
|
|
*/
|
|
|
|
|
|
flat varying vec3 zMults;
|
|
uniform sampler2D colortex0;//clouds
|
|
uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16
|
|
// uniform sampler2D colortex4;//Skybox
|
|
uniform sampler2D colortex3;
|
|
uniform sampler2D colortex5;
|
|
uniform sampler2D colortex7; // normal
|
|
uniform sampler2D colortex6; // Noise
|
|
uniform sampler2D colortex8; // specular
|
|
// uniform sampler2D colortex9; // specular
|
|
uniform sampler2D colortex11; // specular
|
|
uniform sampler2D colortex10; // specular
|
|
uniform sampler2D colortex12; // specular
|
|
uniform sampler2D colortex13; // specular
|
|
uniform sampler2D colortex14;
|
|
uniform sampler2D colortex15; // specular
|
|
uniform sampler2D colortex16; // specular
|
|
uniform sampler2D depthtex1;//depth
|
|
uniform sampler2D depthtex0;//depth
|
|
uniform sampler2D noisetex;//depth
|
|
uniform sampler2DShadow shadow;
|
|
varying vec4 normalMat;
|
|
uniform int heldBlockLightValue;
|
|
uniform int frameCounter;
|
|
uniform int isEyeInWater;
|
|
uniform float far;
|
|
uniform float near;
|
|
uniform float nightVision;
|
|
uniform float frameTimeCounter;
|
|
uniform float rainStrength;
|
|
uniform mat4 gbufferProjection;
|
|
uniform mat4 gbufferProjectionInverse;
|
|
uniform mat4 gbufferModelViewInverse;
|
|
uniform mat4 gbufferPreviousModelView;
|
|
uniform mat4 gbufferPreviousProjection;
|
|
uniform vec3 previousCameraPosition;
|
|
uniform mat4 shadowModelView;
|
|
uniform mat4 shadowProjection;
|
|
uniform mat4 gbufferModelView;
|
|
// uniform float viewWidth;
|
|
// uniform float viewHeight;
|
|
uniform float aspectRatio;
|
|
uniform vec2 texelSize;
|
|
uniform vec3 cameraPosition;
|
|
uniform vec3 sunVec;
|
|
uniform ivec2 eyeBrightnessSmooth;
|
|
uniform ivec2 eyeBrightness;
|
|
|
|
// uniform int worldTime;
|
|
|
|
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
|
|
|
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
|
|
|
|
|
vec3 toScreenSpace(vec3 p) {
|
|
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
|
|
vec3 p3 = p * 2. - 1.;
|
|
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
|
|
return fragposition.xyz / fragposition.w;
|
|
}
|
|
|
|
vec3 toScreenSpacePrev(vec3 p) {
|
|
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
|
|
vec3 p3 = p * 2. - 1.;
|
|
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
|
|
return fragposition.xyz / fragposition.w;
|
|
}
|
|
vec3 worldToView(vec3 p3) {
|
|
vec4 pos = vec4(p3, 0.0);
|
|
pos = gbufferModelView * pos;
|
|
return pos.xyz;
|
|
}
|
|
|
|
|
|
float ld(float dist) {
|
|
return (2.0 * near) / (far + near - dist * (far - near));
|
|
}
|
|
vec3 ld(vec3 dist) {
|
|
return (2.0 * near) / (far + near - dist * (far - near));
|
|
}
|
|
vec3 srgbToLinear2(vec3 srgb){
|
|
return mix(
|
|
srgb / 12.92,
|
|
pow(.947867 * srgb + .0521327, vec3(2.4) ),
|
|
step( .04045, srgb )
|
|
);
|
|
}
|
|
vec3 blackbody2(float Temp)
|
|
{
|
|
float t = pow(Temp, -1.5);
|
|
float lt = log(Temp);
|
|
|
|
vec3 col = vec3(0.0);
|
|
col.x = 220000.0 * t + 0.58039215686;
|
|
col.y = 0.39231372549 * lt - 2.44549019608;
|
|
col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y;
|
|
col.z = 0.76078431372 * lt - 5.68078431373;
|
|
col = clamp(col,0.0,1.0);
|
|
col = Temp < 1000. ? col * Temp * 0.001 : col;
|
|
|
|
return srgbToLinear2(col);
|
|
}
|
|
|
|
vec3 normVec (vec3 vec){
|
|
return vec*inversesqrt(dot(vec,vec));
|
|
}
|
|
vec3 viewToWorld(vec3 viewPosition) {
|
|
vec4 pos;
|
|
pos.xyz = viewPosition;
|
|
pos.w = 0.0;
|
|
pos = gbufferModelViewInverse * pos;
|
|
return pos.xyz;
|
|
}
|
|
#include "lib/res_params.glsl"
|
|
#include "lib/Shadow_Params.glsl"
|
|
#include "lib/color_transforms.glsl"
|
|
#include "lib/sky_gradient.glsl"
|
|
#include "lib/stars.glsl"
|
|
#include "lib/volumetricClouds.glsl"
|
|
#include "lib/waterBump.glsl"
|
|
#include "lib/specular.glsl"
|
|
|
|
#include "lib/diffuse_lighting.glsl"
|
|
|
|
float lengthVec (vec3 vec){
|
|
return sqrt(dot(vec,vec));
|
|
}
|
|
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
|
float triangularize(float dither)
|
|
{
|
|
float center = dither*2.0-1.0;
|
|
dither = center*inversesqrt(abs(center));
|
|
return clamp(dither-fsign(center),0.0,1.0);
|
|
}
|
|
|
|
|
|
float interleaved_gradientNoise(){
|
|
// vec2 coord = gl_FragCoord.xy + (frameCounter%40000);
|
|
vec2 coord = gl_FragCoord.xy + frameTimeCounter;
|
|
// vec2 coord = gl_FragCoord.xy;
|
|
float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) );
|
|
return noise ;
|
|
}
|
|
|
|
vec2 R2_dither(){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return vec2(fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter), fract((1.0-alpha.x) * gl_FragCoord.x + (1.0-alpha.y) * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter));
|
|
}
|
|
float blueNoise(){
|
|
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * (frameCounter*0.5+0.5) );
|
|
}
|
|
vec4 blueNoise(vec2 coord){
|
|
return texelFetch2D(colortex6, ivec2(coord )%512, 0) ;
|
|
}
|
|
vec3 fp10Dither(vec3 color,float dither){
|
|
const vec3 mantissaBits = vec3(6.,6.,5.);
|
|
vec3 exponent = floor(log2(color));
|
|
return color + dither*exp2(-mantissaBits)*exp2(exponent);
|
|
}
|
|
|
|
vec3 decode (vec2 encn){
|
|
vec3 n = vec3(0.0);
|
|
encn = encn * 2.0 - 1.0;
|
|
n.xy = abs(encn);
|
|
n.z = 1.0 - n.x - n.y;
|
|
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
|
|
return clamp(normalize(n.xyz),-1.0,1.0);
|
|
}
|
|
vec2 decodeVec2(float a){
|
|
const vec2 constant1 = 65535. / vec2( 256., 65536.);
|
|
const float constant2 = 256. / 255.;
|
|
return fract( a * constant1 ) * constant2 ;
|
|
}
|
|
|
|
|
|
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort){
|
|
float alpha0 = sampleNumber/nb;
|
|
float alpha = (sampleNumber+jitter)/nb;
|
|
float angle = jitter*6.28 + alpha * 84.0 * 6.28;
|
|
|
|
float sin_v, cos_v;
|
|
|
|
sin_v = sin(angle);
|
|
cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v)*sqrt(alpha);
|
|
}
|
|
vec3 toShadowSpaceProjected(vec3 p3){
|
|
p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz;
|
|
p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz;
|
|
p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz;
|
|
return p3;
|
|
}
|
|
|
|
vec2 R2_samples(int n){
|
|
vec2 alpha = vec2(0.75487765, 0.56984026);
|
|
return fract(alpha * n);
|
|
}
|
|
|
|
vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0){
|
|
float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb)));
|
|
float angle = alpha * (nbRot * 3.14) + spinAngle*3.14;
|
|
|
|
float ssR = alpha;
|
|
float sin_v, cos_v;
|
|
|
|
sin_v = sin(angle);
|
|
cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v)*ssR;
|
|
}
|
|
|
|
|
|
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
|
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
|
|
int spCount = rayMarchSampleCount;
|
|
vec3 start = toShadowSpaceProjected(rayStart);
|
|
vec3 end = toShadowSpaceProjected(rayEnd);
|
|
vec3 dV = (end-start);
|
|
//limit ray length at 32 blocks for performance and reducing integration error
|
|
//you can't see above this anyway
|
|
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
|
dV *= maxZ;
|
|
|
|
rayLength *= maxZ;
|
|
|
|
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
|
estEndDepth *= maxZ;
|
|
estSunDepth *= maxZ;
|
|
|
|
vec3 absorbance = vec3(1.0);
|
|
vec3 vL = vec3(0.0);
|
|
|
|
float phase = phaseg(VdotL,0.7) * 1.5 + 0.1;
|
|
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
float expFactor = 11.0;
|
|
for (int i=0;i<spCount;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
|
vec3 spPos = start.xyz + dV*d;
|
|
|
|
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
|
|
|
//project into biased shadowmap space
|
|
float distortFactor = calcDistort(spPos.xy);
|
|
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
|
float sh = 1.0;
|
|
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
sh = shadow2D( shadow, pos).x;
|
|
}
|
|
|
|
#ifdef VL_CLOUDS_SHADOWS
|
|
sh *= GetCloudShadow_VLFOG(progressW);
|
|
#endif
|
|
|
|
|
|
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs );
|
|
vec3 sunMul = exp(-max(estSunDepth * d,0.0) * waterCoefs);
|
|
|
|
vec3 light = (sh * lightSource * phase * sunMul + (ambientMul*ambient) )*scatterCoef;
|
|
// vec3 light = sh * vec3(1);
|
|
|
|
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
|
absorbance *= exp(-dd * rayLength * waterCoefs);
|
|
}
|
|
inColor += vL;
|
|
}
|
|
|
|
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
|
|
|
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
|
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
|
vec2 movement = vec2(-0.035*frameTimeCounter);
|
|
float caustic = 0.0;
|
|
float weightSum = 0.0;
|
|
float radiance = 2.39996;
|
|
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
|
|
|
const vec2 wave_size[4] = vec2[](
|
|
vec2(64.),
|
|
vec2(32.,16.),
|
|
vec2(16.,32.),
|
|
vec2(48.)
|
|
);
|
|
|
|
for (int i = 0; i < 4; i++){
|
|
pos = rotationMatrix * pos;
|
|
|
|
vec2 speed = movement;
|
|
float waveStrength = 1.0;
|
|
|
|
if( i == 0) {
|
|
speed *= 0.15;
|
|
waveStrength = 2.0;
|
|
}
|
|
|
|
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
|
|
|
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
|
|
|
weightSum -= exp2(caustic*0.1);
|
|
}
|
|
return caustic / weightSum;
|
|
}
|
|
|
|
|
|
// float waterCaustics(vec3 wPos, vec3 lightSource) {
|
|
// vec2 movement = vec2(frameTimeCounter*0.05);
|
|
// vec2 pos = (wPos + WsunVec/WsunVec.y*max(SEA_LEVEL - wPos.y,0.0)).xz ;
|
|
// float caustic = 1.0;
|
|
// float weightSum = 0.0;
|
|
|
|
// float radiance = 2.39996;
|
|
// mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
|
|
|
// const vec2 wave_size[3] = vec2[](
|
|
// vec2(48.,12.),
|
|
// vec2(12.,48.),
|
|
// vec2(32.)
|
|
// );
|
|
|
|
// float WavesLarge = clamp( pow(1.0-pow(1.0-texture2D(noisetex, pos / 600.0 ).b, 5.0),5.0),0.1,1.0);
|
|
|
|
// for (int i = 0; i < 3; i++){
|
|
// pos = rotationMatrix * pos ;
|
|
|
|
// float Waves = texture2D(noisetex, pos / (wave_size[i] + (1-WavesLarge)*0.1) + movement).b;
|
|
|
|
|
|
// caustic += Waves/3;
|
|
// // weightSum += exp2(caustic);
|
|
// }
|
|
// return exp(1.0-(1.0-pow(1.0-abs((caustic - 1.5)*2.0)*0.5,0.5)) * 30) + 0.5 ;
|
|
// }
|
|
|
|
|
|
|
|
float rayTraceShadow(vec3 dir,vec3 position,float dither){
|
|
const float quality = 16.;
|
|
vec3 clipPosition = toClipSpace3(position);
|
|
//prevents the ray from going behind the camera
|
|
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
|
|
(-near -position.z) / dir.z : far*sqrt(3.) ;
|
|
vec3 direction = toClipSpace3(position+dir*rayLength)-clipPosition; //convert to clip space
|
|
direction.xyz = direction.xyz/max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y); //fixed step size
|
|
vec3 stepv = direction * 3.0 * clamp(MC_RENDER_QUALITY,1.,2.0)*vec3(RENDER_SCALE,1.0);
|
|
|
|
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0);
|
|
// spos.xy += (TAA_Offset*(texelSize/4))*RENDER_SCALE ;
|
|
spos += stepv*dither ;
|
|
|
|
for (int i = 0; i < int(quality); i++) {
|
|
spos += stepv;
|
|
|
|
float sp = texture2D(depthtex1,spos.xy).x;
|
|
|
|
if( sp < spos.z) {
|
|
float dist = abs(linZ(sp)-linZ(spos.z))/linZ(spos.z);
|
|
if (dist < 0.015 ) return i / quality;
|
|
}
|
|
}
|
|
return 1.0;
|
|
}
|
|
|
|
vec2 tapLocation_alternate(
|
|
int sampleNumber,
|
|
float spinAngle,
|
|
int nb,
|
|
float nbRot,
|
|
float r0
|
|
){
|
|
float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb)));
|
|
float angle = alpha * (nbRot * 3.14) ;
|
|
|
|
float ssR = alpha + spinAngle*3.14;
|
|
float sin_v, cos_v;
|
|
|
|
sin_v = sin(angle);
|
|
cos_v = cos(angle);
|
|
|
|
return vec2(cos_v, sin_v)*ssR;
|
|
}
|
|
|
|
|
|
void ssAO(inout vec3 lighting, inout float sss, vec3 fragpos,float mulfov, vec2 noise, vec3 normal, vec2 texcoord, vec3 ambientCoefs, vec2 lightmap){
|
|
|
|
ivec2 pos = ivec2(gl_FragCoord.xy);
|
|
const float tan70 = tan(70.*3.14/180.);
|
|
|
|
float dist = 1.0 + clamp(fragpos.z*fragpos.z/50.0,0,2); // shrink sample size as distance increases
|
|
float dist2 = 1-clamp(linZ(fragpos.z)*50,0,1); // shrink sample size as distance increases
|
|
|
|
float mulfov2 = gbufferProjection[1][1]/(tan70 * dist);
|
|
float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*5/50.0;
|
|
float maxR2_2 = mix(500, fragpos.z*fragpos.z*mulfov2*2./50.0, dist2);
|
|
|
|
|
|
float rd = mulfov2 * 0.1 ;
|
|
//pre-rotate direction
|
|
float n = 0.0;
|
|
|
|
float occlusion = 0.0;
|
|
sss = 0.0;
|
|
vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ;
|
|
|
|
int seed = (frameCounter%40000)*2 + (1+frameCounter);
|
|
float randomDir = fract(R2_samples(seed).y + noise.x ) * 1.61803398874 ;
|
|
vec3 NormalSpecific = viewToWorld(normal);
|
|
|
|
for (int j = 0; j < 7 ;j++) {
|
|
|
|
vec2 sp = tapLocation_alternate(j, 0.0, 7, 20, randomDir);
|
|
// vec2 sp = vogel_disk_7[j];
|
|
float thing = sp.y < 0.0 && clamp(floor(abs(NormalSpecific.y)*2.0),0.0,1.0) < 1.0 ? rd * 10: rd;
|
|
|
|
|
|
vec2 sampleOffset = sp*thing;
|
|
vec2 sampleOffset2 = sp*rd ;
|
|
sampleOffset = min(sampleOffset, sampleOffset2);
|
|
// vec2 sampleOffset = sp*rd;
|
|
|
|
ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE);
|
|
|
|
if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) {
|
|
vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) );
|
|
vec3 vec = t0.xyz - fragpos;
|
|
float dsquared = dot(vec,vec);
|
|
|
|
if (dsquared > 1e-5){
|
|
if (dsquared < maxR2){
|
|
float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.);
|
|
occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0);
|
|
|
|
}
|
|
|
|
if (dsquared > maxR2_2){
|
|
float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.);
|
|
|
|
sss += NdotV + NdotV*clamp(1.0-maxR2_2/dsquared,0.0,1.0);
|
|
|
|
// sss += (1.0 - NdotV) ;
|
|
}
|
|
|
|
n += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
occlusion *= mix(2.5, 2.0 , clamp(floor(abs(NormalSpecific.y)*2.0),0.0,1.0));
|
|
occlusion = max(1.0 - occlusion/n, 0.0);
|
|
|
|
|
|
sss *= mix(1.0, 1.5 , clamp(floor(abs(NormalSpecific.y)*2.0),0.0,1.0));
|
|
sss = max(1.0 - sss/n, 0.0) ;
|
|
|
|
lighting = lighting*max(occlusion,pow(lightmap.x,4));
|
|
}
|
|
|
|
vec3 DoContrast(vec3 Color, float strength){
|
|
|
|
float Contrast = log(strength);
|
|
|
|
return clamp(mix(vec3(0.5), Color, Contrast) ,0,255);
|
|
}
|
|
|
|
|
|
vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){
|
|
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
|
|
|
|
float stepSize = stepsizes / dist;
|
|
int maxSteps = STEPS;
|
|
vec3 clipPosition = toClipSpace3(position);
|
|
float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ?
|
|
(-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far;
|
|
vec3 end = toClipSpace3(position+dir*rayLength) ;
|
|
vec3 direction = end-clipPosition ; //convert to clip space
|
|
|
|
float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize;
|
|
//get at which length the ray intersects with the edge of the screen
|
|
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
|
|
|
|
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0;
|
|
|
|
vec3 stepv = direction/len;
|
|
|
|
int iterations = min(int(min(len, mult*len)-2), maxSteps);
|
|
|
|
//Do one iteration for closest texel (good contact shadows)
|
|
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ;
|
|
spos.xy += TAA_Offset*texelSize*0.5*RENDER_SCALE;
|
|
spos += stepv/(stepSize/2);
|
|
|
|
float distancered = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
|
|
|
|
for(int i = 0; i < iterations; i++){
|
|
if (spos.x < 0.0 || spos.y < 0.0 || spos.z < 0.0 || spos.x > 1.0 || spos.y > 1.0 || spos.z > 1.0) return vec3(1.1);
|
|
spos += stepv*noise;
|
|
|
|
float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/ texelSize/4),0).w/65000.0);
|
|
float currZ = linZ(spos.z);
|
|
|
|
if( sp < currZ) {
|
|
float dist = abs(sp-currZ)/currZ;
|
|
if (dist <= 0.1) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0);
|
|
}
|
|
}
|
|
return vec3(1.1);
|
|
}
|
|
|
|
vec3 cosineHemisphereSample(vec2 Xi, float roughness){
|
|
float r = sqrt(Xi.x);
|
|
float theta = 2.0 * 3.14159265359 * Xi.y;
|
|
|
|
float x = r * cos(theta);
|
|
float y = r * sin(theta);
|
|
|
|
return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.)));
|
|
}
|
|
vec3 TangentToWorld(vec3 N, vec3 H, float roughness){
|
|
vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
|
|
vec3 T = normalize(cross(UpVector, N));
|
|
vec3 B = cross(N, T);
|
|
|
|
return vec3((T * H.x) + (B * H.y) + (N * H.z));
|
|
}
|
|
|
|
void rtAO(inout vec3 lighting, vec3 normal, vec2 noise, vec3 fragpos, float lightmap, float inShadow){
|
|
int nrays = 4;
|
|
float occlude = 0.0;
|
|
|
|
float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength);
|
|
|
|
for (int i = 0; i < nrays; i++){
|
|
int seed = (frameCounter%40000)*nrays+i;
|
|
vec2 ij = fract(R2_samples(seed) + noise.rg);
|
|
|
|
|
|
vec3 rayDir = TangentToWorld( normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0) ;
|
|
|
|
#ifdef HQ_SSGI
|
|
vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 30.); // ssr rt
|
|
#else
|
|
vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 24.); // choc sspt
|
|
#endif
|
|
|
|
// vec3 lightDir = normalize(vec3(0.2,0.8,0.2));
|
|
// float skyLightDir = dot(rayDir,lightDir); // the positons where the occlusion happens
|
|
|
|
float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens
|
|
if (rayHit.z > 1.0) occlude += max(rayDir.y,1-AO_Strength);
|
|
|
|
|
|
}
|
|
// occlude = mix( occlude,1, inShadow);
|
|
// occlude = occlude*0.5 + 0.5;
|
|
lighting *= 2.5;
|
|
lighting *= mix(occlude/nrays,1.0,0) ;
|
|
}
|
|
|
|
void rtGI(inout vec3 lighting, vec3 normal,vec2 noise,vec3 fragpos, float lightmap, vec3 albedo){
|
|
int nrays = RAY_COUNT;
|
|
vec3 intRadiance = vec3(0.0);
|
|
vec3 occlude = vec3(0.0);
|
|
|
|
lighting *= 1.50;
|
|
float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength);
|
|
|
|
for (int i = 0; i < nrays; i++){
|
|
int seed = (frameCounter%40000)*nrays+i;
|
|
vec2 ij = fract(R2_samples(seed) + noise );
|
|
|
|
vec3 rayDir = TangentToWorld(normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0);
|
|
|
|
#ifdef HQ_SSGI
|
|
vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 50.); // ssr rt
|
|
#else
|
|
vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 30.); // choc sspt
|
|
#endif
|
|
|
|
float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens
|
|
|
|
if (rayHit.z < 1.){
|
|
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
|
|
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
|
|
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
|
|
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0)
|
|
intRadiance = 0 + texture2D(colortex5,previousPosition.xy).rgb * GI_Strength ;
|
|
else
|
|
intRadiance += lighting*skyLightDir; // make sure ambient light exists but at screen edges when you turn
|
|
|
|
}else{
|
|
intRadiance += lighting*skyLightDir;
|
|
}
|
|
}
|
|
lighting = intRadiance/nrays;
|
|
}
|
|
|
|
|
|
void SubsurfaceScattering(inout float SSS, float Scattering, float Density, float LabDenisty){
|
|
// #ifdef LabPBR_subsurface_scattering
|
|
float labcurve = pow(LabDenisty,LabSSS_Curve);
|
|
// beers law
|
|
SSS = clamp(exp( Scattering * -(10 - LabDenisty*7)), 0.0, labcurve);
|
|
if (abs(Scattering-0.1) < 0.0004 ) SSS = labcurve;
|
|
// #else
|
|
// // beers law
|
|
// SSS = clamp(exp(Scattering * -Density), 0.0, 1.0);
|
|
// if (abs(Scattering-0.1) < 0.0004 ) SSS = 1.0;
|
|
// #endif
|
|
}
|
|
|
|
vec3 SubsurfaceScattering_2(vec3 albedo, float Scattering, float Density, float LabDenisty, float lightPos, bool yeSSS){
|
|
// if(!yeSSS) return vec3(0.0);
|
|
|
|
float labcurve = pow(LabDenisty,LabSSS_Curve);
|
|
float density = sqrt(30 - labcurve*15);
|
|
// #endif
|
|
|
|
vec3 absorbed = max(1.0 - albedo,0.0) * density;
|
|
// absorbed = vec3(1.);
|
|
|
|
vec3 scatter = exp(-sqrt(Scattering * absorbed)) * exp(Scattering * -density);
|
|
// float gloop = (1.0-exp(sqrt(Scattering) * -density));
|
|
// vec3 scatter = mix(vec3(1.0), max(albedo - gloop * (1-labcurve),0.0), gloop) * exp(Scattering * -density);
|
|
|
|
// #ifdef LabPBR_subsurface_scattering
|
|
scatter *= labcurve;
|
|
// #endif
|
|
|
|
scatter *= 0.5 + CustomPhase(lightPos, 1.0,30.0)*20;
|
|
|
|
return scatter;
|
|
}
|
|
|
|
vec3 SubsurfaceScattering_3(vec3 albedo, float Scattering, float Density, float lightPos){
|
|
|
|
float labcurve = pow(Density,LabSSS_Curve);
|
|
float density = sqrt(30 - labcurve*15);
|
|
|
|
vec3 absorbed = max(1.0 - albedo,0.0) * density;
|
|
vec3 scatter = exp(-sqrt(Scattering * absorbed)) * exp(Scattering * -density);
|
|
|
|
scatter *= labcurve;
|
|
scatter *= 0.5 + CustomPhase(lightPos, 1.0,30.0)*20;
|
|
|
|
return scatter;
|
|
}
|
|
|
|
vec3 SubsurfaceScattering_sky(vec3 albedo, float Scattering, float Density){
|
|
|
|
vec3 absorbed = max(luma(albedo) - albedo,0.0);
|
|
// vec3 scatter = exp(-absorbed) * exp(pow(max(Scattering-0.5,0.0),0.5) * -10);
|
|
vec3 scatter = exp(-sqrt(max(Scattering+0.1,0.0) * absorbed * 20)) * exp(Scattering* -5);
|
|
|
|
// vec3 scatter = exp(pow(max(Scattering-0.5,0.0),0.5) * -5) * vec3(1);
|
|
|
|
scatter *= pow(Density,LabSSS_Curve);
|
|
|
|
return scatter;
|
|
}
|
|
|
|
float densityAtPosSNOW(in vec3 pos){
|
|
pos /= 18.;
|
|
pos.xz *= 0.5;
|
|
vec3 p = floor(pos);
|
|
vec3 f = fract(pos);
|
|
f = (f*f) * (3.-2.*f);
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
vec2 coord = uv / 512.0;
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
return mix(xy.r,xy.g, f.y);
|
|
}
|
|
|
|
// Emin's and Gri's combined ideas to stop peter panning and light leaking, also has little shadowacne so thats nice
|
|
// https://www.complementary.dev/reimagined
|
|
// https://github.com/gri573
|
|
void GriAndEminShadowFix(
|
|
inout vec3 WorldPos,
|
|
vec3 FlatNormal,
|
|
float VanillaAO,
|
|
float SkyLightmap,
|
|
bool Entities
|
|
){
|
|
float DistanceOffset = clamp(0.1 + length(WorldPos) / (shadowMapResolution*0.20), 0.0,1.0) ;
|
|
vec3 Bias = FlatNormal * DistanceOffset; // adjust the bias thingy's strength as it gets farther away.
|
|
|
|
// stop lightleaking
|
|
if(SkyLightmap < 0.1 && !Entities) {
|
|
WorldPos += mix(Bias, 0.5 * (0.5 - fract(WorldPos + cameraPosition + FlatNormal*0.01 ) ), VanillaAO) ;
|
|
}else{
|
|
WorldPos += Bias;
|
|
}
|
|
}
|
|
|
|
void LabEmission(
|
|
inout vec3 Lighting,
|
|
vec3 Albedo,
|
|
float Emission
|
|
){
|
|
// if( Emission < 255.0/255.0 ) Lighting = mix(Lighting, Albedo * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why
|
|
if( Emission < 255.0/255.0 ) Lighting += (Albedo * Emissive_Brightness) * pow(Emission, Emissive_Curve);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#include "lib/PhotonGTAO.glsl"
|
|
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
//////////////////////////////VOID MAIN//////////////////////////////
|
|
void main() {
|
|
|
|
vec2 texcoord = gl_FragCoord.xy*texelSize;
|
|
|
|
float z0 = texture2D(depthtex0,texcoord).x;
|
|
float z = texture2D(depthtex1,texcoord).x;
|
|
float TranslucentDepth = clamp( ld(z0)-ld(z0) ,0.0,1.0);
|
|
|
|
vec2 tempOffset=TAA_Offset;
|
|
vec3 fragpos = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z));
|
|
vec3 fragpos_rtshadow = toScreenSpace(vec3(texcoord/RENDER_SCALE,z));
|
|
vec3 fragpos_handfix = fragpos;
|
|
|
|
if ( z < 0.56) fragpos_handfix.z /= MC_HAND_DEPTH; // fix lighting on hand
|
|
|
|
vec3 p3 = mat3(gbufferModelViewInverse) * fragpos;
|
|
vec3 np3 = normVec(p3);
|
|
|
|
p3 += gbufferModelViewInverse[3].xyz;
|
|
|
|
|
|
float dirtAmount = Dirt_Amount;
|
|
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
|
|
|
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
|
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
|
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / pi;
|
|
|
|
|
|
#ifdef AEROCHROME_MODE
|
|
totEpsilon *= 10.0;
|
|
scatterCoef *= 0.1;
|
|
#endif
|
|
|
|
float noise = blueNoise();
|
|
|
|
|
|
float iswaterstuff = texture2D(colortex7,texcoord).a ;
|
|
bool iswater = iswaterstuff > 0.99;
|
|
|
|
////// --------------- UNPACK OPAQUE GBUFFERS --------------- //////
|
|
vec4 data = texture2D(colortex1,texcoord);
|
|
vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); // albedo, masks
|
|
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); // normals, lightmaps
|
|
// vec4 dataUnpacked2 = vec4(decodeVec2(data.z),decodeVec2(data.w));
|
|
|
|
vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x));
|
|
vec2 lightmap = dataUnpacked1.yz;
|
|
vec3 normal = decode(dataUnpacked0.yw);
|
|
|
|
////// --------------- UNPACK TRANSLUCENT GBUFFERS --------------- //////
|
|
// vec4 dataTranslucent = texture2D(colortex11,texcoord);
|
|
// vec4 dataT_Unpacked0 = vec4(decodeVec2(dataTranslucent.x),decodeVec2(dataTranslucent.y));
|
|
// vec4 dataT_Unpacked1 = vec4(decodeVec2(dataTranslucent.z),decodeVec2(dataTranslucent.w));
|
|
// vec4 dataT_Unpacked2 = vec4(decodeVec2(dataTranslucent.z),decodeVec2(dataTranslucent.w));
|
|
|
|
////// --------------- UNPACK MISC --------------- //////
|
|
vec4 SpecularTex = texture2D(colortex8,texcoord);
|
|
float LabSSS = clamp((-65.0 + SpecularTex.z * 255.0) / 190.0 ,0.0,1.0);
|
|
|
|
vec4 normalAndAO = texture2D(colortex15,texcoord);
|
|
vec3 FlatNormals = normalAndAO.rgb * 2.0 - 1.0;
|
|
vec3 slopednormal = normal;
|
|
|
|
#ifdef POM
|
|
#ifdef Horrible_slope_normals
|
|
vec3 ApproximatedFlatNormal = normalize(cross(dFdx(p3), dFdy(p3))); // it uses depth that has POM written to it.
|
|
slopednormal = normalize(clamp(normal, ApproximatedFlatNormal*2.0 - 1.0, ApproximatedFlatNormal*2.0 + 1.0) );
|
|
#endif
|
|
#endif
|
|
|
|
float vanilla_AO = normalAndAO.a;
|
|
normalAndAO.a = clamp(pow(normalAndAO.a*5,4),0,1);
|
|
|
|
|
|
|
|
bool translucent = abs(dataUnpacked1.w-0.5) <0.01; // Strong translucency
|
|
bool translucent2 = abs(dataUnpacked1.w-0.6) <0.01; // Weak translucency
|
|
bool translucent3 = abs(dataUnpacked1.w-0.55) <0.01; // all blocks
|
|
bool translucent4 = abs(dataUnpacked1.w-0.65) <0.01; // Weak translucency
|
|
bool entities = abs(dataUnpacked1.w-0.45) < 0.01;
|
|
|
|
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
|
|
bool blocklights = abs(dataUnpacked1.w-0.8) <0.01;
|
|
|
|
// vec3 AO = vec3(1.0);
|
|
float SkySSS = 0.0;
|
|
vec3 filtered = vec3(1.412,1.0,0.0);
|
|
if (!hand) filtered = texture2D(colortex3,texcoord).rgb;
|
|
vec3 ambientCoefs = normal/dot(abs(normal),vec3(1.));
|
|
|
|
float lightleakfix = clamp(eyeBrightness.y/240.0 + lightmap.y,0.0,1.0);
|
|
|
|
vec3 DirectLightColor = (lightCol.rgb/80.0);
|
|
DirectLightColor *= clamp(abs(WsunVec.y)*2,0.,1.);
|
|
|
|
vec3 AmbientLightColor = avgAmbient;
|
|
|
|
float cloudShadow = 1.0;
|
|
|
|
if ( z >= 1.) { //sky
|
|
vec3 background = vec3(0.0);
|
|
background += stars(vec3(np3.x,abs(np3.y),np3.z)) * 5.0 ;
|
|
|
|
#ifndef ambientLight_only
|
|
background += drawSun(dot(lightCol.a * WsunVec, np3),0, DirectLightColor,vec3(0.0)) ; // sun
|
|
background += drawSun(dot(lightCol.a * -WsunVec, np3),0, blackbody2(Moon_temp)/500.,vec3(0.0)); // moon
|
|
#endif
|
|
|
|
background *= clamp( (np3.y+ 0.02)*5.0 + (eyeAltitude - 319)/800000 ,0.0,1.0);
|
|
|
|
vec3 skyTEX = skyFromTex(np3,colortex4)/150.0 * 5.0;
|
|
background += skyTEX;
|
|
// eclipse
|
|
// color *=max(1.0 - drawSun(dot(lightCol.a * WsunVec, (np3-0.0002)*1.001),0, vec3(1),vec3(0.0)),0.0);
|
|
|
|
|
|
vec4 cloud = texture2D_bicubic(colortex0,texcoord*CLOUDS_QUALITY);
|
|
background = background*cloud.a + cloud.rgb;
|
|
|
|
gl_FragData[0].rgb = clamp(fp10Dither(background ,triangularize(noise)),0.0,65000.);
|
|
|
|
}else{//land
|
|
|
|
////// ----- direct ----- //////
|
|
|
|
vec3 Direct_lighting = vec3(1.0);
|
|
|
|
float NdotL = dot(slopednormal,WsunVec);
|
|
NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0);
|
|
float Shadows = clamp(1.0 - filtered.b,0.0,1.0);
|
|
|
|
if (abs(filtered.y-0.1) < 0.0004 && !iswater) Shadows = clamp((lightmap.y-0.85)*25,0,1);
|
|
float SHADOWBLOCKERDEPTBH = filtered.y;
|
|
if (abs(filtered.y-0.1) < 0.0004 && !iswater) SHADOWBLOCKERDEPTBH = 1.0-clamp((lightmap.y-0.85)*25,0,1);
|
|
|
|
vec3 SSS = vec3(0.0);
|
|
float SSS_strength;
|
|
|
|
if (NdotL > 0.001) {
|
|
|
|
vec3 p3_shadow = mat3(gbufferModelViewInverse) * fragpos_handfix + gbufferModelViewInverse[3].xyz;
|
|
|
|
GriAndEminShadowFix(p3_shadow, viewToWorld(FlatNormals), normalAndAO.a, lightmap.y, entities);
|
|
|
|
|
|
vec3 projectedShadowPosition = mat3(shadowModelView) * p3_shadow + shadowModelView[3].xyz;
|
|
projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
|
|
|
|
//apply distortion
|
|
float distortFactor = calcDistort(projectedShadowPosition.xy);
|
|
projectedShadowPosition.xy *= distortFactor;
|
|
|
|
//do shadows only if on shadow map
|
|
if (abs(projectedShadowPosition.x) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.y) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.z) < 6.0){
|
|
|
|
float diffthresh = 0.0;
|
|
// if(hand && eyeBrightness.y/240. > 0.0) diffthresh = 0.0003;
|
|
|
|
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5);
|
|
Shadows = 0.0;
|
|
|
|
float rdMul = filtered.x*distortFactor*d0*k/shadowMapResolution;
|
|
|
|
for(int i = 0; i < SHADOW_FILTER_SAMPLE_COUNT; i++){
|
|
// if(hand) noise = 0.0;
|
|
vec2 offsetS = tapLocation(i,SHADOW_FILTER_SAMPLE_COUNT,1.618,noise,0.0);
|
|
float weight = 1.0+(i+noise)*rdMul/SHADOW_FILTER_SAMPLE_COUNT*shadowMapResolution;
|
|
float isShadow = shadow2D(shadow,vec3(projectedShadowPosition + vec3(rdMul*offsetS,-diffthresh*weight))).x;
|
|
|
|
Shadows += isShadow/SHADOW_FILTER_SAMPLE_COUNT;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef Sub_surface_scattering
|
|
#ifdef Variable_Penumbra_Shadows
|
|
|
|
SSS = SubsurfaceScattering_3(albedo, SHADOWBLOCKERDEPTBH, LabSSS, clamp(dot(np3, WsunVec),0.0,1.0)) ;
|
|
|
|
// if (isEyeInWater == 0) SSS *= lightleakfix; // light leak fix
|
|
#endif
|
|
|
|
|
|
|
|
if (!hand){
|
|
|
|
if (abs(filtered.y-0.1) < 0.0004 && LabSSS < 0.0 ) SSS = vec3(0.0);
|
|
|
|
#ifdef SCREENSPACE_CONTACT_SHADOWS
|
|
|
|
vec3 vec = lightCol.a*sunVec;
|
|
float screenShadow = rayTraceShadow(vec, fragpos_rtshadow, interleaved_gradientNoise());
|
|
screenShadow *= screenShadow ;
|
|
|
|
#ifdef Variable_Penumbra_Shadows
|
|
Shadows = min(screenShadow, Shadows);
|
|
if (abs(filtered.y-0.1) < 0.0004 ) SSS *= vec3(Shadows);
|
|
#endif
|
|
|
|
// #else
|
|
// if (abs(filtered.y-0.1) < 0.0004 && LabSSS > 0.0 ) SSS = clamp((lightmap.y-0.87)*25,0,1) * clamp(pow(1+dot(WsunVec,normal),25),0,1) * vec3(1);
|
|
#endif
|
|
}
|
|
|
|
#ifdef Variable_Penumbra_Shadows
|
|
SSS *= 1.0-NdotL*Shadows;
|
|
#endif
|
|
#else
|
|
SSS = vec3(0.0);
|
|
#endif
|
|
|
|
#ifdef VOLUMETRIC_CLOUDS
|
|
#ifdef CLOUDS_SHADOWS
|
|
cloudShadow = GetCloudShadow(p3);
|
|
Shadows *= cloudShadow;
|
|
SSS *= cloudShadow;
|
|
#endif
|
|
#endif
|
|
|
|
////// ----- indirect ----- //////
|
|
|
|
vec3 Indirect_lighting = vec3(1.0);
|
|
|
|
// float skylight = clamp(abs(normal.y+1),0.0,1.0);
|
|
float skylight = clamp(pow(abs(ambientCoefs.y+1.0),2),0.35,2.0);
|
|
// float skylight = clamp(abs(ambientCoefs.y+0.5),0.35,2.0);
|
|
|
|
|
|
#if indirect_effect == 2 || indirect_effect == 3 || indirect_effect == 4
|
|
if (!hand) skylight = 1.0;
|
|
#endif
|
|
|
|
// do this to make underwater shading easier.
|
|
vec2 newLightmap = lightmap.xy;
|
|
if((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)) newLightmap.y = min(newLightmap.y+0.1,1.0);
|
|
|
|
|
|
#ifndef ambientSSS_view
|
|
Indirect_lighting = DoAmbientLighting(AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), newLightmap.xy, skylight);
|
|
#endif
|
|
|
|
vec3 AO = vec3(1.0);
|
|
vec3 debug = vec3(0.0);
|
|
|
|
// vanilla AO
|
|
#if indirect_effect == 0
|
|
// AO = vec3(mix(1.0 - exp2(-5 * pow(1-vanilla_AO,3)), 1.0, pow(newLightmap.x,4))) ;
|
|
AO = vec3( exp( (vanilla_AO*vanilla_AO) * -5) ) ;
|
|
#endif
|
|
|
|
// SSAO + vanilla AO
|
|
#if indirect_effect == 1
|
|
// AO *= mix(1.0 - exp2(-5 * pow(1-vanilla_AO,3)),1.0, pow(newLightmap.x,4));
|
|
|
|
AO = vec3( exp( (vanilla_AO*vanilla_AO) * -3) ) ;
|
|
if (!hand) ssAO(AO, SkySSS, fragpos, 1.0, blueNoise(gl_FragCoord.xy).rg, FlatNormals , texcoord, ambientCoefs, newLightmap.xy);
|
|
|
|
#endif
|
|
|
|
// GTAO
|
|
#if indirect_effect == 2
|
|
int seed = (frameCounter%40000);
|
|
vec2 r2 = fract(R2_samples(seed) + blueNoise(gl_FragCoord.xy).rg);
|
|
if (!hand) AO = ambient_occlusion(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z), fragpos, worldToView(slopednormal), r2, debug) * vec3(1.0);
|
|
#endif
|
|
|
|
// RTAO
|
|
#if indirect_effect == 3
|
|
if (!hand) rtAO(AO, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, newLightmap.y, NdotL*Shadows);
|
|
#endif
|
|
|
|
// SSGI
|
|
#if indirect_effect == 4
|
|
if (!hand) rtGI(Indirect_lighting, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, newLightmap.y, albedo);
|
|
#endif
|
|
|
|
#ifndef AO_in_sunlight
|
|
AO = mix(AO,vec3(1.0), min(NdotL*Shadows,1.0));
|
|
#endif
|
|
|
|
|
|
Indirect_lighting *= AO;
|
|
Indirect_lighting += SubsurfaceScattering_sky(albedo, SkySSS, LabSSS) * ((AmbientLightColor* 2.0 * ambient_brightness)* 8./150.) * pow(newLightmap.y,3) * pow(1.0-clamp(abs(ambientCoefs.y+0.5),0.0,1.0),0.1) ;
|
|
|
|
|
|
|
|
|
|
|
|
////// ----- Under Water Shading ----- //////
|
|
|
|
vec3 waterabsorb_speculars = vec3(1);
|
|
if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){
|
|
|
|
vec3 fragpos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z0));
|
|
float Vdiff = distance(fragpos,fragpos0);
|
|
float VdotU = np3.y;
|
|
float estimatedDepth = Vdiff * abs(VdotU); //assuming water plane
|
|
estimatedDepth = estimatedDepth;
|
|
// make it such that the estimated depth flips to be correct when entering water.
|
|
|
|
if (isEyeInWater == 1) estimatedDepth = (1.0-lightmap.y)*16.0;
|
|
|
|
float estimatedSunDepth = Vdiff; //assuming water plane
|
|
vec3 Absorbtion = exp2(-totEpsilon*estimatedDepth);
|
|
|
|
// caustics...
|
|
float Direct_caustics = waterCaustics(mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition, WsunVec);
|
|
float Ambient_Caustics = waterCaustics(mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition, vec3(0.5, 1.0, 0.5));
|
|
|
|
// apply caustics to the lightting
|
|
DirectLightColor *= 0.5 + max(pow(Direct_caustics*2,2),0.0);
|
|
// Indirect_lighting *= 0.5 + max(pow(Ambient_Caustics,2),0.0);
|
|
|
|
// directLightCol *= Direct_caustics;
|
|
// Indirect_lighting *= Ambient_Caustics*0.5+0.5;
|
|
|
|
// apply water absorbtion to the lighting
|
|
// waterabsorb_speculars.rgb *= Absorbtion;
|
|
|
|
DirectLightColor *= Absorbtion;
|
|
// Indirect_lighting *= Absorbtion;
|
|
|
|
}
|
|
|
|
|
|
|
|
////// ----- Finalize ----- //////
|
|
|
|
#ifdef Seasons
|
|
#ifdef Snowy_Winter
|
|
vec3 snow_p3 = p3 + cameraPosition;
|
|
float SnowPatches = densityAtPosSNOW(vec3(snow_p3.x,snow_p3.y/48.,snow_p3.z) *250);
|
|
SnowPatches = 1.0 - clamp( exp(pow(SnowPatches,3.5) * -100.0) ,0,1);
|
|
SnowPatches *= clamp(sqrt(normal.y),0,1) * clamp(pow(lightmap.y,25)*25,0,1);
|
|
|
|
if(!hand && !iswater){
|
|
albedo = mix(albedo, vec3(0.8,0.9,1.0), SnowPatches);
|
|
SpecularTex.rg = mix(SpecularTex.rg, vec2(1,0.05), SnowPatches);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
Direct_lighting = DoDirectLighting(DirectLightColor, Shadows, NdotL, 0.0);
|
|
|
|
|
|
#ifdef ambientLight_only
|
|
Direct_lighting = vec3(0.0);
|
|
#endif
|
|
|
|
|
|
//combine all light sources
|
|
vec3 FINAL_COLOR = Indirect_lighting + Direct_lighting;
|
|
|
|
#ifdef Variable_Penumbra_Shadows
|
|
FINAL_COLOR += SSS*DirectLightColor * lightleakfix;
|
|
#endif
|
|
#ifndef ambientSSS_view
|
|
FINAL_COLOR *= albedo;
|
|
#endif
|
|
|
|
#ifdef Specular_Reflections
|
|
MaterialReflections(FINAL_COLOR, SpecularTex.r, SpecularTex.ggg, albedo, WsunVec, (Shadows*NdotL)*DirectLightColor, lightmap.y, slopednormal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg, interleaved_gradientNoise()), hand, entities);
|
|
#endif
|
|
|
|
// #ifdef LabPBR_Emissives
|
|
LabEmission(FINAL_COLOR, albedo, SpecularTex.a);
|
|
// #endif
|
|
|
|
gl_FragData[0].rgb = FINAL_COLOR;
|
|
}
|
|
|
|
////// ----- Apply Clouds ----- //////
|
|
// gl_FragData[0].rgb = gl_FragData[0].rgb *cloud.a + cloud.rgb;
|
|
|
|
////// ----- Under Water Fog ----- //////
|
|
|
|
if (iswater){
|
|
vec3 fragpos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z0));
|
|
float Vdiff = distance(fragpos,fragpos0);
|
|
float VdotU = np3.y;
|
|
float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane
|
|
float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane
|
|
|
|
float custom_lightmap_T = pow(texture2D(colortex14, texcoord).a,1.5);
|
|
|
|
vec3 ambientColVol = (avgAmbient * 8./150./1.5) * max(custom_lightmap_T,MIN_LIGHT_AMOUNT*0.001);
|
|
vec3 lightColVol = (lightCol.rgb / 80.) ;
|
|
|
|
if (isEyeInWater == 0) waterVolumetrics(gl_FragData[0].rgb, fragpos0, fragpos, estimatedDepth , estimatedSunDepth, Vdiff, noise, totEpsilon, scatterCoef, ambientColVol, lightColVol, dot(np3, WsunVec));
|
|
}
|
|
|
|
// phasefunc = phaseg(clamp(dot(np3, WsunVec),0.0,1.0), 0.5)*10;
|
|
|
|
// if(z < 1) gl_FragData[0].rgb = Custom_GGX(normal, -np3, WsunVec, SpecularTex.r, SpecularTex.g) * vec3(1.0);
|
|
// gl_FragData[0].rgb = SubsurfaceScattering_sky(albedo, SkySSS, LabSSS);
|
|
|
|
/* DRAWBUFFERS:3 */
|
|
} |