mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-12 03:52:18 +08:00
2ee6634935
new stuff reworked clouds, general lighting, end and nether shaders still WIP lighting is more balanced in general.
168 lines
4.7 KiB
GLSL
168 lines
4.7 KiB
GLSL
///////////////// POSITION
|
|
///////////////// POSITION
|
|
///////////////// POSITION
|
|
|
|
vec3 ManualLightPos = vec3(ORB_X, ORB_Y, ORB_Z);
|
|
|
|
vec3 lighting_pos = vec3(0, -1, 0);
|
|
|
|
vec3 lightSource = normalize(lighting_pos);
|
|
vec3 viewspace_sunvec = mat3(gbufferModelView) * lightSource;
|
|
vec3 WsunVec = normalize(mat3(gbufferModelViewInverse) * viewspace_sunvec);
|
|
|
|
|
|
|
|
///////////////// COLOR
|
|
///////////////// COLOR
|
|
///////////////// COLOR
|
|
vec3 LightSourceColor(){
|
|
|
|
vec3 Color = vec3(1.0,0.75,0.5);
|
|
|
|
return Color;
|
|
}
|
|
|
|
///////////////// SHAPE
|
|
///////////////// SHAPE
|
|
///////////////// SHAPE
|
|
vec3 LightSourceShape(vec3 WorldPos){
|
|
|
|
vec3 Shapes = vec3(0.0);
|
|
vec3 Origin = WorldPos ;
|
|
|
|
return Shapes;
|
|
}
|
|
|
|
|
|
float densityAtPosFog(in vec3 pos){
|
|
pos /= 18.;
|
|
pos.xz *= 0.5;
|
|
|
|
vec3 p = floor(pos);
|
|
vec3 f = fract(pos);
|
|
|
|
f = (f*f) * (3.-2.*f);
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
vec2 coord = uv / 512.0;
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
return mix(xy.r,xy.g, f.y);
|
|
}
|
|
|
|
float cloudVol(in vec3 pos){
|
|
|
|
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
|
|
// vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
|
|
|
// float fog_shape = 1-densityAtPosFog(samplePos * 16.0);
|
|
// float fog_eroded = 1-densityAtPosFog(samplePos2 * (200 + fog_shape*25));
|
|
|
|
// float finalfog = clamp( (fog_shape*2.0 - fog_eroded*0.3) - 1.5, 0.0, 1.0);
|
|
|
|
float finalfog = 1-exp(max(samplePos.y - 60,0.0) / -1);
|
|
|
|
|
|
return finalfog;
|
|
}
|
|
|
|
// float GetCloudShadow(vec3 WorldPos, vec3 LightPos, float noise){
|
|
// float Shadow = 0.0;
|
|
|
|
// for (int i=0; i < 3; i++){
|
|
|
|
// // vec3 shadowSamplePos = WorldPos - LightPos.y/abs(LightPos.y) * (0.25 + pow(i,0.75)*0.25);
|
|
// vec3 shadowSamplePos = WorldPos + LightPos * (i * 20);
|
|
|
|
// float Cast = cloudVol(shadowSamplePos);
|
|
// Shadow += Cast;
|
|
// }
|
|
|
|
// return clamp(exp(-Shadow*30),0.0,1.0);
|
|
// }
|
|
//Mie phase function
|
|
// float phaseg(float x, float g){
|
|
// float gg = g * g;
|
|
// return (gg * -0.25 + 0.25) * pow(-2.0 * (g * x) + (gg + 1.0), -1.5) /3.14;
|
|
// }
|
|
|
|
mat2x3 getVolumetricRays(float dither,vec3 fragpos,float dither2) {
|
|
int SAMPLES = 16;
|
|
//project pixel position into projected shadowmap space
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
|
|
//project view origin into projected shadowmap space
|
|
vec3 start = vec3(0.0);
|
|
|
|
//rayvector into projected shadow map space
|
|
//we can use a projected vector because its orthographic projection
|
|
//however we still have to send it to curved shadow map space every step
|
|
vec3 dV = (fragposition-start);
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
float maxLength = min(length(dVWorld),32.0 * 12.0)/length(dVWorld);
|
|
dV *= maxLength;
|
|
dVWorld *= maxLength;
|
|
|
|
//apply dither
|
|
vec3 progress = start.xyz;
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
|
vec3 vL = vec3(0.);
|
|
float dL = length(dVWorld);
|
|
|
|
vec3 absorbance = vec3(1.0);
|
|
float expFactor = 11.0;
|
|
|
|
vec3 fogColor = gl_Fog.color.rgb;
|
|
|
|
// float SdotV = dot(normalize(viewspace_sunvec), normalize(fragpos));
|
|
// float OrbMie = phaseg(SdotV, 0.8);
|
|
|
|
for (int i=0;i<SAMPLES;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither)/float(SAMPLES)) * log(expFactor) / float(SAMPLES)/(expFactor-1.0);
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
float densityVol = cloudVol(progressW) ;
|
|
float density = min(densityVol,0.1);
|
|
float air = 0.005;
|
|
|
|
/// THE OOOOOOOOOOOOOOOOOOOOOORB
|
|
vec3 LightColor = LightSourceColor();
|
|
|
|
// vec3 LightPos = LightSourcePosition(progressW, cameraPosition);
|
|
// float OrbMie = exp(length(LightPos) * -0.03) * 64.0;
|
|
|
|
float OrbMie = clamp(exp((progressW.y - 30) / -10.) * 5,0,1);
|
|
|
|
LightColor *= OrbMie;
|
|
|
|
float CastLight = 0.0;
|
|
for (int j=0; j < 5; j++){
|
|
vec3 shadowSamplePos = progressW + WsunVec * (0.5 + j * 5);
|
|
// vec3 shadowSamplePos = progressW - LightPos.y * (j*30);
|
|
|
|
float densityVol2 = cloudVol(shadowSamplePos);
|
|
CastLight += densityVol2;
|
|
}
|
|
|
|
vec3 CastedLight = LightColor * exp(CastLight * -15);
|
|
|
|
// #ifdef THE_ORB
|
|
// density += clamp((1.0 - length(LightPos) / 10.0) * 10 ,0.0,1.0) ;
|
|
// #endif
|
|
|
|
vec3 AmbientLight = fogColor* exp(density * -25);
|
|
|
|
vec3 vL0 = AmbientLight;
|
|
|
|
vec3 vL1 = vec3(1.0,0.75,0.5) * 0.1;
|
|
|
|
vL += (vL0 - vL0*exp(-density*dd*dL)) * absorbance;
|
|
vL += (vL1 - vL1*exp(-air*dd*dL)) * absorbance;
|
|
|
|
absorbance *= exp(-(density+air)*dd*dL);
|
|
}
|
|
return mat2x3(vL,absorbance);
|
|
} |