Bliss-Shader/shaders/lib/overworld_fog.glsl
2024-11-16 18:15:48 +01:00

357 lines
14 KiB
GLSL

uniform float noPuddleAreas;
float densityAtPosFog(in vec3 pos){
pos /= 18.;
pos.xz *= 0.5;
vec3 p = floor(pos);
vec3 f = fract(pos);
f = (f*f) * (3.-2.*f);
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
vec2 coord = uv / 512.0;
vec2 xy = texture2D(noisetex, coord).yx;
return mix(xy.r,xy.g, f.y);
}
float cloudVol(in vec3 pos, float maxDistance ){
float fogYstart = FOG_START_HEIGHT+3;
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
float uniformFog = 0.0;
float low_gradientFog = exp2(-0.3 * max(pos.y - fogYstart,0.0));
float medium_gradientFog = exp2(-0.15 * max(pos.y - fogYstart,0.0));
float high_gradientFog = exp2(-0.06 * max(pos.y - fogYstart,0.0));
float fog_shape = 0.0;
float fog_erosion = 0.0;
if(sandStorm < 1.0 && snowStorm < 1.0){
fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0);
fog_erosion = 1.0 - densityAtPosFog(samplePos2 * 200.0 - vec3(min(max(fog_shape - 0.6 ,0.0) * 2.0 ,1.0)*200.0));
}
float cloudyFog = max(min(max(fog_shape - 0.6 ,0.0) * 2.0 ,1.0) - fog_erosion * 0.4 , 0.0) * exp(-0.05 * max(pos.y - (fogYstart+20),0.0));
float rainyFog = (low_gradientFog * 0.5 + exp2(-0.06 * max(pos.y - fogYstart,0.0))) * rainStrength * noPuddleAreas;
if(sandStorm > 0.0 || snowStorm > 0.0){
float IntenseFogs = pow(1.0 - densityAtPosFog( (samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*15.0) * 100.0),2.0) * mix(1.0, high_gradientFog, snowStorm);
cloudyFog = mix(cloudyFog, IntenseFogs, sandStorm+snowStorm);
medium_gradientFog = 1.0;
}
FogDensities(medium_gradientFog, cloudyFog, rainyFog, maxDistance, dailyWeatherParams0.a, dailyWeatherParams1.a);
return uniformFog + medium_gradientFog + cloudyFog;
}
float phaseRayleigh(float cosTheta) {
const vec2 mul_add = vec2(0.1, 0.28) / acos(-1.0);
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
}
float fogPhase(float lightPoint){
float linear = clamp(-lightPoint*0.5+0.5,0.0,1.0);
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
exponential += sqrt(exp2(sqrt(linear) * -12.5));
// float exponential = 1.0 / (linear * 10.0 + 0.05);
return exponential;
}
float phaseCloudFog(float x, float g){
float gg = g * g;
return (gg * -0.25 + 0.25) * pow(-2.0 * (g * x) + (gg + 1.0), -1.5) / 3.14;
}
uniform ivec2 eyeBrightness;
vec4 GetVolumetricFog(
in vec3 viewPosition,
in vec2 dither,
in vec3 LightColor,
in vec3 AmbientColor,
in vec3 AveragedAmbientColor,
inout float atmosphereAlpha,
inout vec3 sceneColor
){
#ifndef TOGGLE_VL_FOG
return vec4(0.0,0.0,0.0,1.0);
#endif
/// ------------- RAYMARCHING STUFF ------------- \\\
int SAMPLECOUNT = VL_SAMPLES;
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.0));
//rayvector into projected shadow map space
//we can use a projected vector because its orthographic projection
//however we still have to send it to curved shadow map space every step
vec3 dV = fragposition - start;
vec3 dVWorld = wpos - gbufferModelViewInverse[3].xyz;
#ifdef DISTANT_HORIZONS
float maxLength = min(length(dVWorld), max(far, dhRenderDistance))/length(dVWorld);
#else
float maxLength = min(length(dVWorld), far)/length(dVWorld);
#endif
dV *= maxLength;
dVWorld *= maxLength;
float dL = length(dVWorld)/8.0;
vec3 progress = start.xyz;
vec3 progressW = vec3(0.0);
float expFactor = 11.0;
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
vec3 color = vec3(0.0);
vec3 finalAbsorbance = vec3(1.0);
// float totalAbsorbance = 1.0;
vec3 totalAbsorbance = vec3(1.0);
float fogAbsorbance = 1.0;
// float atmosphereAbsorbance = 1.0;
vec3 atmosphereAbsorbance = vec3(1.0);
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec;
float SdotV = dot(sunVec, normalize(viewPosition))*lightCol.a;
///// ----- fog lighting
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
float sunPhase = fogPhase(SdotV)*5.0;// phaseCloudFog(SdotV, 0.9) + phaseCloudFog(SdotV, 0.85) + phaseCloudFog(SdotV, 0.5) * 5.0;
float sunPhase2 = (phaseCloudFog(SdotV, 0.85) + phaseCloudFog(SdotV, 0.5)) * 5.0;
float skyPhase = 2.0 + pow(1.0-pow(1.0-clamp(normalize(wpos).y*0.5+0.5,0.0,1.0),2.0),5.0)*2.0 ;//pow(clamp(normalize(wpos).y*0.5+0.5,0.0,1.0),4.0)*5.0;
float rayL = phaseRayleigh(SdotV);
vec3 rC = vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5) ;
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
vec3 skyLightPhased = AmbientColor;
vec3 LightSourcePhased = LightColor;
skyLightPhased *= skyPhase;
LightSourcePhased *= sunPhase;
#ifdef ambientLight_only
LightSourcePhased = vec3(0.0);
#endif
#ifdef PER_BIOME_ENVIRONMENT
vec3 biomeDirect = LightSourcePhased;
vec3 biomeIndirect = skyLightPhased;
float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect);
#endif
#ifdef RAYMARCH_CLOUDS_WITH_FOG
vec3 SkyLightColor = AmbientColor;
vec3 LightSourceColor = LightColor;
#ifdef ambientLight_only
LightSourceColor = vec3(0.0);
#endif
vec3 dV_Sun = WsunVec;
float mieDay = phaseg(SdotV, 0.85) + phaseg(SdotV, 0.75);
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5);
vec3 directScattering = LightSourceColor * mieDay * 3.14;
vec3 directMultiScattering = LightSourceColor * mieDayMulti * 3.14 * 2.0;
#endif
#if defined LPV_VL_FOG_ILLUMINATION && defined EXCLUDE_WRITE_TO_LUT
float TorchBrightness_autoAdjust = mix(1.0, 30.0, clamp(exp(-10.0*exposure),0.0,1.0)) / 5.0;
#endif
float inACave = 1.0 - caveDetection;
float lightLevelZero = pow(clamp(eyeBrightnessSmooth.y/240.0 ,0.0,1.0),3.0);
// SkyLightColor *= lightLevelZero*0.9 + 0.1;
vec3 finalsceneColor = vec3(0.0);
for (int i = 0; i < SAMPLECOUNT; i++) {
float d = (pow(expFactor, float(i+dither.x)/float(SAMPLECOUNT))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither.y)/float(SAMPLECOUNT)) * log(expFactor) / float(SAMPLECOUNT)/(expFactor-1.0);
progress = start.xyz + d*dV;
progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
// if(length(progressW-cameraPosition) > cloudDepth) break;
//------------------------------------
//------ SAMPLE SHADOWS FOR FOG EFFECTS
//------------------------------------
#ifdef DISTORT_SHADOWMAP
float distortFactor = calcDistort(progress.xy);
#else
float distortFactor = 1.0;
#endif
vec3 shadowPos = vec3(progress.xy*distortFactor, progress.z);
vec3 sh = vec3(1.0);
if (abs(shadowPos.x) < 1.0-0.5/2048. && abs(shadowPos.y) < 1.0-0.5/2048){
shadowPos = shadowPos*vec3(0.5,0.5,0.5/6.0)+0.5;
#ifdef TRANSLUCENT_COLORED_SHADOWS
sh = vec3(shadow2D(shadowtex0, shadowPos).x);
if(shadow2D(shadowtex1, shadowPos).x > shadowPos.z && sh.x < 1.0){
vec4 translucentShadow = texture2D(shadowcolor0, shadowPos.xy);
if(translucentShadow.a < 0.9) sh = normalize(translucentShadow.rgb+0.0001);
}
#else
sh = vec3(shadow2D(shadow, shadowPos).x);
#endif
}
#ifdef RAYMARCH_CLOUDS_WITH_FOG
vec3 sh_forClouds = sh;
#endif
#ifdef VL_CLOUDS_SHADOWS
sh *= GetCloudShadow(progressW, WsunVec*lightCol.a);
#endif
#ifdef PER_BIOME_ENVIRONMENT
float maxDistance = inBiome * min(max(1.0 - length(d*dVWorld.xz)/(32*8),0.0)*2.0,1.0);
float densityVol = cloudVol(progressW, maxDistance) * inACave;
#else
float densityVol = cloudVol(progressW, 0.0) * inACave;
#endif
//------------------------------------
//------ MAIN FOG EFFECT
//------------------------------------
float fogDensity = densityVol;
float fogVolumeCoeff = exp(-fogDensity*dd*dL); // this is like beer-lambert law or something
#ifdef PER_BIOME_ENVIRONMENT
vec3 indirectLight = mix(skyLightPhased, biomeIndirect, maxDistance);
vec3 DirectLight = mix(LightSourcePhased, biomeDirect, maxDistance) * sh;
#else
vec3 indirectLight = skyLightPhased;
vec3 DirectLight = LightSourcePhased * sh;
#endif
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz);
vec3 lighting = DirectLight + indirectLight;// * (lightLevelZero*0.99 + 0.01) + Lightning;
color += (lighting - lighting * fogVolumeCoeff) * totalAbsorbance;
// kill fog absorbance when in caves.
totalAbsorbance *= mix(1.0, fogVolumeCoeff, lightLevelZero);
//------------------------------------
//------ ATMOSPHERE HAZE EFFECT
//------------------------------------
#if defined CloudLayer0 && defined VOLUMETRIC_CLOUDS
float cloudPlaneCutoff = clamp((CloudLayer0_height + max(eyeAltitude-(CloudLayer0_height-100),0)) - progressW.y,0.0,1.0);
#else
float cloudPlaneCutoff = 1.0;
#endif
// maximum range for atmosphere haze, basically.
float planetVolume = 1.0 - exp(clamp(1.0 - length(progressW-cameraPosition) / (16*150), 0.0,1.0) * -10);
// just air
vec2 airCoef = (exp2(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 192.0 * Haze_amount) * cloudPlaneCutoff * planetVolume;
// Pbr for air, yolo mix between mie and rayleigh for water droplets
vec3 rL = rC*airCoef.x;
vec3 m = mC*(airCoef.y+densityVol*300.0);
// calculate the atmosphere haze seperately and purely additive to color, do not contribute to absorbtion.
vec3 atmosphereVolumeCoeff = exp(-(rL+m)*dd*dL);
// vec3 Atmosphere = LightSourcePhased * sh * (rayL*rL + sunPhase*m) + AveragedAmbientColor * (rL+m);
vec3 Atmosphere = (LightSourcePhased * sh * (rayL*rL + sunPhase*m) + AveragedAmbientColor * (rL+m) * (lightLevelZero*0.99 + 0.01)) * inACave;
color += (Atmosphere - Atmosphere * atmosphereVolumeCoeff) / (rL+m+1e-6) * atmosphereAbsorbance;
// finalsceneColor = sceneColor * totalAbsorbance;
atmosphereAbsorbance *= atmosphereVolumeCoeff*fogVolumeCoeff;
//------------------------------------
//------ LPV FOG EFFECT
//------------------------------------
#if defined LPV_VL_FOG_ILLUMINATION && defined EXCLUDE_WRITE_TO_LUT
color += LPV_FOG_ILLUMINATION(progressW-cameraPosition, dd, dL) * totalAbsorbance;
#endif
//------------------------------------
//------ STUPID RENDER CLOUDS AS FOG EFFECT
//------------------------------------
#ifdef RAYMARCH_CLOUDS_WITH_FOG
float otherlayer = max(progressW.y - (CloudLayer0_height+99.5), 0.0) > 0.0 ? 0.0 : 1.0;
float DUAL_MIN_HEIGHT = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
float DUAL_MAX_HEIGHT = DUAL_MIN_HEIGHT + 100.0;
float DUAL_DENSITY = otherlayer > 0.0 ? CloudLayer0_density : CloudLayer1_density;
if(clamp(progressW.y - DUAL_MAX_HEIGHT,0.0,1.0) < 1.0 && clamp(progressW.y - DUAL_MIN_HEIGHT,0.0,1.0) > 0.0){
#if defined CloudLayer1 && defined CloudLayer0
float upperLayerOcclusion = otherlayer > 0.0 ? GetCumulusDensity(1, progressW + vec3(0.0,1.0,0.0) * max((LAYER1_minHEIGHT+30) - progressW.y,0.0), 0, LAYER1_minHEIGHT, LAYER1_maxHEIGHT) : 0.0;
float skylightOcclusion = mix(1.0, (1.0 - LAYER1_DENSITY)*0.8 + 0.2, (1.0 - exp2(-5.0 * (upperLayerOcclusion*upperLayerOcclusion))));
#else
float skylightOcclusion = 1.0;
#endif
float DUAL_MIN_HEIGHT_2 = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
float DUAL_MAX_HEIGHT_2 = DUAL_MIN_HEIGHT + 100.0;
float cumulus = GetCumulusDensity(-1, progressW, 1, CloudLayer0_height, CloudLayer1_height);
float fadedDensity = DUAL_DENSITY * pow(clamp((progressW.y - DUAL_MIN_HEIGHT_2)/25,0.0,1.0),2.0);
float muE = cumulus*fadedDensity;
float directLight = 0.0;
if(muE > 1e-5){
for (int j=0; j < 3; j++){
// vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
vec3 shadowSamplePos = progressW + dV_Sun * (20.0 + j * (20.0 + dither.y*20.0));
float shadow = GetCumulusDensity(-1, shadowSamplePos, 0, DUAL_MIN_HEIGHT, DUAL_MAX_HEIGHT) * DUAL_DENSITY;
directLight += shadow;
}
/// shadows cast from one layer to another
/// large cumulus -> small cumulus
#if defined CloudLayer1 && defined CloudLayer0
if(otherlayer > 0.0) directLight += LAYER1_DENSITY * 2.0 * GetCumulusDensity(1, progressW + dV_Sun/abs(dV_Sun.y) * max((LAYER1_minHEIGHT+35) - progressW.y,0.0), 0, LAYER1_minHEIGHT, LAYER1_maxHEIGHT);
#endif
// altostratus -> cumulus
#ifdef CloudLayer2
vec3 HighAlt_shadowPos = progressW + dV_Sun/abs(dV_Sun.y) * max(LAYER2_HEIGHT - progressW.y,0.0);
float HighAlt_shadow = GetAltostratusDensity(HighAlt_shadowPos) * CloudLayer2_density * (1.0-abs(WsunVec.y));
directLight += HighAlt_shadow;
#endif
float skyScatter = clamp(((DUAL_MAX_HEIGHT - progressW.y) / 100.0),0.0,1.0); // linear gradient from bottom to top of cloud layer
float distantfade = 1- exp( -10*pow(clamp(1.0 - length(progressW - cameraPosition)/(32*65),0.0,1.0),2));
vec3 cloudlighting = DoCloudLighting(DUAL_DENSITY * cumulus, SkyLightColor*skylightOcclusion, skyScatter, directLight, directScattering*sh_forClouds, directMultiScattering*sh_forClouds, 1);
color += max(cloudlighting - cloudlighting*exp(-muE*dd*dL_alternate),0.0) * totalAbsorbance * lightLevelZero;
totalAbsorbance *= max(exp(-muE*dd*dL_alternate),1.0-lightLevelZero);
}
}
#else
// if (totalAbsorbance < 1e-5) break;
#endif
}
// sceneColor = finalsceneColor;
// atmosphereAlpha = atmosphereAbsorbance;
return vec4(color, totalAbsorbance);
}