Bliss-Shader/shaders/dimensions/all_particles.fsh
2024-11-16 18:15:48 +01:00

485 lines
14 KiB
GLSL

#include "/lib/settings.glsl"
// #if defined END_SHADER || defined NETHER_SHADER
// #undef IS_LPV_ENABLED
// #endif
#ifdef IS_LPV_ENABLED
#extension GL_EXT_shader_image_load_store: enable
#extension GL_ARB_shading_language_packing: enable
#endif
#include "/lib/res_params.glsl"
varying vec4 lmtexcoord;
varying vec4 color;
flat varying float exposure;
#ifdef LINES
flat varying int SELECTION_BOX;
#endif
#ifdef OVERWORLD_SHADER
const bool shadowHardwareFiltering = true;
uniform sampler2DShadow shadow;
#ifdef TRANSLUCENT_COLORED_SHADOWS
uniform sampler2D shadowcolor0;
uniform sampler2DShadow shadowtex0;
uniform sampler2DShadow shadowtex1;
#endif
flat varying vec3 WsunVec;
flat varying vec3 averageSkyCol_Clouds;
flat varying vec4 lightCol;
#endif
uniform int isEyeInWater;
uniform sampler2D texture;
uniform sampler2D noisetex;
uniform sampler2D colortex4;
#ifdef IS_LPV_ENABLED
uniform usampler1D texBlockData;
uniform sampler3D texLpv1;
uniform sampler3D texLpv2;
#endif
uniform mat4 gbufferProjectionInverse;
uniform mat4 gbufferModelViewInverse;
uniform mat4 gbufferModelView;
uniform mat4 shadowModelView;
uniform mat4 shadowProjection;
uniform vec3 cameraPosition;
uniform float frameTimeCounter;
#include "/lib/Shadow_Params.glsl"
uniform vec2 texelSize;
uniform ivec2 eyeBrightnessSmooth;
uniform float rainStrength;
uniform float nightVision;
flat varying float HELD_ITEM_BRIGHTNESS;
#include "/lib/util.glsl"
#ifdef OVERWORLD_SHADER
#ifdef Daily_Weather
flat varying vec4 dailyWeatherParams0;
flat varying vec4 dailyWeatherParams1;
#else
vec4 dailyWeatherParams0 = vec4(CloudLayer0_coverage, CloudLayer1_coverage, CloudLayer2_coverage, 0.0);
vec4 dailyWeatherParams1 = vec4(CloudLayer0_density, CloudLayer1_density, CloudLayer2_density, 0.0);
#endif
#define CLOUDSHADOWSONLY
#include "/lib/volumetricClouds.glsl"
#endif
#ifdef IS_LPV_ENABLED
uniform int heldItemId;
uniform int heldItemId2;
uniform int frameCounter;
#include "/lib/hsv.glsl"
#include "/lib/lpv_common.glsl"
#include "/lib/lpv_render.glsl"
#endif
#include "/lib/diffuse_lighting.glsl"
#include "/lib/sky_gradient.glsl"
vec3 toLinear(vec3 sRGB){
return sRGB * (sRGB * (sRGB * 0.305306011 + 0.682171111) + 0.012522878);
}
// #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
vec3 toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
vec3 p3 = p * 2. - 1.;
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
return fragposition.xyz / fragposition.w;
}
uniform int framemod8;
#include "/lib/TAA_jitter.glsl"
//Mie phase function
float phaseg(float x, float g){
float gg = g * g;
return (gg * -0.25 + 0.25) * pow(-2.0 * (g * x) + (gg + 1.0), -1.5) / 3.14;
}
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
// #undef BASIC_SHADOW_FILTER
#ifdef OVERWORLD_SHADER
float ComputeShadowMap(inout vec3 directLightColor, vec3 playerPos, float maxDistFade){
if(maxDistFade <= 0.0) return 1.0;
// setup shadow projection
vec3 projectedShadowPosition = mat3(shadowModelView) * playerPos + shadowModelView[3].xyz;
projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
// un-distort
#ifdef DISTORT_SHADOWMAP
float distortFactor = calcDistort(projectedShadowPosition.xy);
projectedShadowPosition.xy *= distortFactor;
#else
float distortFactor = 1.0;
#endif
// hamburger
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5);
float shadowmap = 0.0;
vec3 translucentTint = vec3(0.0);
#ifdef TRANSLUCENT_COLORED_SHADOWS
// determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth
float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z) * 2.0,0.0,1.0),2.0);
// get opaque shadow data to get opaque data from translucent shadows.
float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x;
shadowmap += max(opaqueShadow, shadowDepthDiff);
// get translucent shadow data
vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy);
// this curve simply looked the nicest. it has no other meaning.
float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2);
// normalize the color to remove luminance, and keep the hue. remove all opaque color.
// mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster.
translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * shadowAlpha;
// make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0
translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff);
#else
shadowmap += shadow2D(shadow, projectedShadowPosition).x;
#endif
#ifdef TRANSLUCENT_COLORED_SHADOWS
// tint the lightsource color with the translucent shadow color
directLightColor *= mix(vec3(1.0), translucentTint.rgb, maxDistFade);
#endif
return mix(1.0, shadowmap, maxDistFade);
}
#endif
#if defined DAMAGE_BLOCK_EFFECT && defined POM
#extension GL_ARB_shader_texture_lod : enable
mat3 inverseMatrix(mat3 m) {
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22 * a11 - a12 * a21;
float b11 = -a22 * a10 + a12 * a20;
float b21 = a21 * a10 - a11 * a20;
float det = a00 * b01 + a01 * b11 + a02 * b21;
return mat3(b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11),
b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10),
b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) / det;
}
const float MAX_OCCLUSION_DISTANCE = MAX_DIST;
const float MIX_OCCLUSION_DISTANCE = MAX_DIST*0.9;
const int MAX_OCCLUSION_POINTS = MAX_ITERATIONS;
varying vec4 vtexcoordam; // .st for add, .pq for mul
varying vec4 vtexcoord;
vec2 dcdx = dFdx(vtexcoord.st*vtexcoordam.pq)*exp2(Texture_MipMap_Bias);
vec2 dcdy = dFdy(vtexcoord.st*vtexcoordam.pq)*exp2(Texture_MipMap_Bias);
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
uniform mat4 gbufferProjection;
vec3 toClipSpace3(vec3 viewSpacePosition) {
return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
}
flat varying vec3 WsunVec2;
const float mincoord = 1.0/4096.0;
const float maxcoord = 1.0-mincoord;
uniform sampler2D normals;
varying vec4 tangent;
varying vec4 normalMat;
vec4 readNormal(in vec2 coord)
{
return texture2DGradARB(normals,fract(coord)*vtexcoordam.pq+vtexcoordam.st,dcdx,dcdy);
}
vec4 readTexture(in vec2 coord)
{
return texture2DGradARB(texture,fract(coord)*vtexcoordam.pq+vtexcoordam.st,dcdx,dcdy);
}
#endif
uniform float near;
// uniform float far;
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec4 texture2D_POMSwitch(
sampler2D sampler,
vec2 lightmapCoord,
vec4 dcdxdcdy
){
return texture2DGradARB(sampler, lightmapCoord, dcdxdcdy.xy, dcdxdcdy.zw);
}
uniform vec3 eyePosition;
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
#ifdef DAMAGE_BLOCK_EFFECT
/* RENDERTARGETS:11 */
#else
/* DRAWBUFFERS:29 */
#endif
void main() {
#ifdef DAMAGE_BLOCK_EFFECT
vec2 adjustedTexCoord = lmtexcoord.xy;
#ifdef POM
vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(0.0));
vec3 worldpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition;
vec3 normal = normalMat.xyz;
vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w);
mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x,
tangent.y, tangent2.y, normal.y,
tangent.z, tangent2.z, normal.z);
adjustedTexCoord = fract(vtexcoord.st)*vtexcoordam.pq+vtexcoordam.st;
vec3 viewVector = normalize(tbnMatrix*fragpos);
float dist = length(fragpos);
float maxdist = MAX_OCCLUSION_DISTANCE;
// float depth = gl_FragCoord.z;
if (dist < maxdist) {
float depthmap = readNormal(vtexcoord.st).a;
float used_POM_DEPTH = 1.0;
if ( viewVector.z < 0.0 && depthmap < 0.9999 && depthmap > 0.00001) {
#ifdef Adaptive_Step_length
vec3 interval = (viewVector.xyz /-viewVector.z/MAX_OCCLUSION_POINTS * POM_DEPTH) * clamp(1.0-pow(depthmap,2),0.1,1.0);
used_POM_DEPTH = 1.0;
#else
vec3 interval = viewVector.xyz/-viewVector.z/ MAX_OCCLUSION_POINTS*POM_DEPTH;
#endif
vec3 coord = vec3(vtexcoord.st, 1.0);
coord += interval * used_POM_DEPTH;
float sumVec = 0.5;
for (int loopCount = 0; (loopCount < MAX_OCCLUSION_POINTS) && (1.0 - POM_DEPTH + POM_DEPTH * readNormal(coord.st).a ) < coord.p && coord.p >= 0.0; ++loopCount) {
coord = coord + interval * used_POM_DEPTH;
sumVec += used_POM_DEPTH;
}
if (coord.t < mincoord) {
if (readTexture(vec2(coord.s,mincoord)).a == 0.0) {
coord.t = mincoord;
discard;
}
}
adjustedTexCoord = mix(fract(coord.st)*vtexcoordam.pq+vtexcoordam.st, adjustedTexCoord, max(dist-MIX_OCCLUSION_DISTANCE,0.0)/(MAX_OCCLUSION_DISTANCE-MIX_OCCLUSION_DISTANCE));
// vec3 truePos = fragpos + sumVec*inverseMatrix(tbnMatrix)*interval;
// depth = toClipSpace3(truePos).z;
}
}
vec4 Albedo = texture2D_POMSwitch(texture, adjustedTexCoord.xy, vec4(dcdx,dcdy));
#else
vec4 Albedo = texture2D(texture, adjustedTexCoord.xy);
#endif
Albedo.rgb = toLinear(Albedo.rgb);
if(dot(Albedo.rgb, vec3(0.33333)) < 1.0/255.0 || Albedo.a < 0.01 ) { discard; return; }
gl_FragData[0] = vec4(encodeVec2(vec2(0.5)), encodeVec2(Albedo.rg), encodeVec2(vec2(Albedo.b,0.02)), 1.0);
#endif
#if !defined DAMAGE_BLOCK_EFFECT
#ifdef LINES
#ifndef SELECT_BOX
if(SELECTION_BOX > 0) discard;
#endif
#endif
vec2 tempOffset = offsets[framemod8];
vec3 viewPos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0));
vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos;
vec3 feetPlayerPos_normalized = normalize(feetPlayerPos);
vec4 TEXTURE = texture2D(texture, lmtexcoord.xy)*color;
#ifdef WhiteWorld
TEXTURE.rgb = vec3(0.5);
#endif
vec3 Albedo = toLinear(TEXTURE.rgb);
vec2 lightmap = clamp(lmtexcoord.zw,0.0,1.0);
#ifndef OVERWORLD_SHADER
lightmap.y = 1.0;
#endif
#if defined Hand_Held_lights && !defined LPV_ENABLED
#ifdef IS_IRIS
vec3 playerCamPos = eyePosition;
#else
vec3 playerCamPos = cameraPosition;
#endif
// lightmap.x = max(lightmap.x, HELD_ITEM_BRIGHTNESS * clamp( pow(max(1.0-length((feetPlayerPos+cameraPosition) - playerCamPos)/HANDHELD_LIGHT_RANGE,0.0),1.5),0.0,1.0));
if(HELD_ITEM_BRIGHTNESS > 0.0){
float pointLight = clamp(1.0-length((feetPlayerPos+cameraPosition)-playerCamPos)/HANDHELD_LIGHT_RANGE,0.0,1.0);
lightmap.x = mix(lightmap.x, HELD_ITEM_BRIGHTNESS, pointLight*pointLight);
}
#endif
#ifdef WEATHER
gl_FragData[1] = vec4(0.0,0.0,0.0,TEXTURE.a); // for bloomy rain and stuff
#endif
#ifndef WEATHER
#ifndef LINES
gl_FragData[0].a = TEXTURE.a;
#else
gl_FragData[0].a = 1.0;
#endif
#ifndef BLOOMY_PARTICLES
gl_FragData[1].a = 0.0; // for bloomy rain and stuff
#endif
vec3 Direct_lighting = vec3(0.0);
vec3 directLightColor = vec3(0.0);
vec3 Indirect_lighting = vec3(0.0);
vec3 AmbientLightColor = vec3(0.0);
vec3 Torch_Color = vec3(TORCH_R,TORCH_G,TORCH_B);
vec3 MinimumLightColor = vec3(1.0);
if(isEyeInWater == 1) MinimumLightColor = vec3(10.0);
if(lightmap.x >= 0.9) Torch_Color *= LIT_PARTICLE_BRIGHTNESS;
#ifdef OVERWORLD_SHADER
directLightColor = lightCol.rgb/2400.0;
float Shadows = 1.0;
vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(shadowPlayerPos) / (shadowDistance+16),0.0)*5.0,1.0));
float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(shadowPlayerPos) / (shadowDistance+11),0.0)*5.0,1.0));
float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0);
Shadows = ComputeShadowMap(directLightColor, shadowPlayerPos, shadowMapFalloff);
Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff2);
#ifdef CLOUDS_SHADOWS
Shadows *= GetCloudShadow(feetPlayerPos+cameraPosition, WsunVec);
#endif
Direct_lighting = directLightColor * Shadows;
#ifndef LINES
Direct_lighting *= phaseg(clamp(dot(feetPlayerPos_normalized, WsunVec),0.0,1.0), 0.65)*2 + 0.5;
#endif
AmbientLightColor = averageSkyCol_Clouds / 900.0;
#ifdef IS_IRIS
AmbientLightColor *= 2.5;
#else
AmbientLightColor *= 0.5;
#endif
Indirect_lighting = doIndirectLighting(AmbientLightColor, MinimumLightColor, lightmap.y);
#endif
#ifdef NETHER_SHADER
Indirect_lighting = volumetricsFromTex(vec3(0.0,1.0,0.0), colortex4, 6).rgb / 1200.0;
#endif
#ifdef END_SHADER
Indirect_lighting = vec3(0.3,0.6,1.0) * 0.1;
#endif
///////////////////////// BLOCKLIGHT LIGHTING OR LPV LIGHTING OR FLOODFILL COLORED LIGHTING
#ifdef IS_LPV_ENABLED
vec3 lpvPos = GetLpvPosition(feetPlayerPos);
#else
const vec3 lpvPos = vec3(0.0);
#endif
Indirect_lighting += doBlockLightLighting( vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, exposure, feetPlayerPos, lpvPos);
#ifdef LINES
gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * toLinear(color.rgb);
if(SELECTION_BOX > 0) gl_FragData[0].rgba = vec4(toLinear(vec3(SELECT_BOX_COL_R, SELECT_BOX_COL_G, SELECT_BOX_COL_B)), 1.0);
#else
gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * Albedo;
#endif
// distance fade targeting the world border...
if(TEXTURE.a < 0.7 && TEXTURE.a > 0.2) gl_FragData[0] *= clamp(1.0 - length(feetPlayerPos) / 100.0 ,0.0,1.0);
gl_FragData[0].rgb *= 0.1;
#endif
#endif
}