Bliss-Shader/shaders/programs/all_solid.fsh
2023-06-10 16:49:06 -04:00

426 lines
12 KiB
GLSL

#extension GL_EXT_gpu_shader4 : enable
#extension GL_ARB_shader_texture_lod : enable
#include "/lib/settings.glsl"
flat varying int NameTags;
#ifndef USE_LUMINANCE_AS_HEIGHTMAP
#ifndef MC_NORMAL_MAP
#undef POM
#endif
#endif
#ifdef POM
#define MC_NORMAL_MAP
#endif
varying float VanillaAO;
const float mincoord = 1.0/4096.0;
const float maxcoord = 1.0-mincoord;
const float MAX_OCCLUSION_DISTANCE = MAX_DIST;
const float MIX_OCCLUSION_DISTANCE = MAX_DIST*0.9;
const int MAX_OCCLUSION_POINTS = MAX_ITERATIONS;
uniform vec2 texelSize;
uniform int framemod8;
#ifdef POM
varying vec4 vtexcoordam; // .st for add, .pq for mul
varying vec4 vtexcoord;
#endif
#include "/lib/res_params.glsl"
varying vec4 lmtexcoord;
varying vec4 color;
varying vec4 NoSeasonCol;
varying vec4 seasonColor;
uniform float far;
varying vec4 normalMat;
#ifdef MC_NORMAL_MAP
varying vec4 tangent;
uniform float wetness;
uniform sampler2D normals;
uniform sampler2D specular;
varying vec3 FlatNormals;
#endif
#ifdef POM
vec2 dcdx = dFdx(vtexcoord.st*vtexcoordam.pq)*exp2(Texture_MipMap_Bias);
vec2 dcdy = dFdy(vtexcoord.st*vtexcoordam.pq)*exp2(Texture_MipMap_Bias);
#endif
flat varying int lightningBolt;
uniform sampler2D texture;
uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16
uniform float frameTimeCounter;
uniform int frameCounter;
uniform mat4 gbufferProjectionInverse;
uniform mat4 gbufferModelView;
uniform mat4 gbufferProjection;
uniform mat4 gbufferModelViewInverse;
uniform vec3 cameraPosition;
uniform float rainStrength;
uniform sampler2D noisetex;//depth
uniform sampler2D depthtex0;
in vec3 test_motionVectors;
flat varying float blockID;
// float interleaved_gradientNoise(){
// return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
// }
// float interleaved_gradientNoise(){
// vec2 alpha = vec2(0.75487765, 0.56984026);
// vec2 coord = vec2(alpha.x * gl_FragCoord.x,alpha.y * gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter;
// float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
// return noise;
// }
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ;
}
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
return fract( a * constant1 ) * constant2 ;
}
mat3 inverse(mat3 m) {
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22 * a11 - a12 * a21;
float b11 = -a22 * a10 + a12 * a20;
float b21 = a21 * a10 - a11 * a20;
float det = a00 * b01 + a01 * b11 + a02 * b21;
return mat3(b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11),
b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10),
b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) / det;
}
vec3 viewToWorld(vec3 viewPosition) {
vec4 pos;
pos.xyz = viewPosition;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec4 encode (vec3 n, vec2 lightmaps){
n.xy = n.xy / dot(abs(n), vec3(1.0));
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
}
#ifdef MC_NORMAL_MAP
vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){
float bumpmult = clamp(puddle_values,0.0,1.0);
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
return normalize(bump*tbnMatrix);
}
#endif
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
vec3 toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
vec3 p3 = p * 2. - 1.;
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
return fragposition.xyz / fragposition.w;
}
vec3 toClipSpace3(vec3 viewSpacePosition) {
return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
}
#ifdef POM
vec4 readNormal(in vec2 coord)
{
return texture2DGradARB(normals,fract(coord)*vtexcoordam.pq+vtexcoordam.st,dcdx,dcdy);
}
vec4 readTexture(in vec2 coord)
{
return texture2DGradARB(texture,fract(coord)*vtexcoordam.pq+vtexcoordam.st,dcdx,dcdy);
}
#endif
float luma(vec3 color) {
return dot(color,vec3(0.21, 0.72, 0.07));
}
vec3 toLinear(vec3 sRGB){
return sRGB * (sRGB * (sRGB * 0.305306011 + 0.682171111) + 0.012522878);
}
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
vec2(-1.,3.)/8.,
vec2(5.0,1.)/8.,
vec2(-3,-5.)/8.,
vec2(-5.,5.)/8.,
vec2(-7.,-1.)/8.,
vec2(3,7.)/8.,
vec2(7.,-7.)/8.);
vec3 srgbToLinear2(vec3 srgb){
return mix(
srgb / 12.92,
pow(.947867 * srgb + .0521327, vec3(2.4) ),
step( .04045, srgb )
);
}
vec3 blackbody2(float Temp)
{
float t = pow(Temp, -1.5);
float lt = log(Temp);
vec3 col = vec3(0.0);
col.x = 220000.0 * t + 0.58039215686;
col.y = 0.39231372549 * lt - 2.44549019608;
col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y;
col.z = 0.76078431372 * lt - 5.68078431373;
col = clamp(col,0.0,1.0);
col = Temp < 1000. ? col * Temp * 0.001 : col;
return srgbToLinear2(col);
}
float densityAtPosSNOW(in vec3 pos){
pos /= 18.;
pos.xz *= 0.5;
vec3 p = floor(pos);
vec3 f = fract(pos);
f = (f*f) * (3.-2.*f);
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
vec2 coord = uv / 512.0;
vec2 xy = texture2D(noisetex, coord).yx;
return mix(xy.r,xy.g, f.y);
}
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
/* RENDERTARGETS: 1,7,8,15,10 */
void main() {
float phi = 2 * 3.14159265359;
float noise = fract(fract(frameCounter * (1.0 / phi)) + interleaved_gradientNoise() ) ;
vec3 normal = normalMat.xyz;
vec3 normal2 = normalMat.xyz;
#ifdef MC_NORMAL_MAP
vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w);
mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x,
tangent.y, tangent2.y, normal.y,
tangent.z, tangent2.z, normal.z);
#endif
vec2 tempOffset=offsets[framemod8];
vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0));
vec3 worldpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition;
float lightmap = clamp( (lmtexcoord.w-0.8) * 10.0,0.,1.);
#ifdef POM
// vec2 tempOffset=offsets[framemod8];
vec2 adjustedTexCoord = fract(vtexcoord.st)*vtexcoordam.pq+vtexcoordam.st;
// vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0));
vec3 viewVector = normalize(tbnMatrix*fragpos);
float dist = length(fragpos);
gl_FragDepth = gl_FragCoord.z;
#ifdef WORLD
if (dist < MAX_OCCLUSION_DISTANCE) {
float depthmap = readNormal(vtexcoord.st).a;
float used_POM_DEPTH = 1.0;
if ( viewVector.z < 0.0 && depthmap < 0.9999 && depthmap > 0.00001) {
#ifdef Adaptive_Step_length
vec3 interval = (viewVector.xyz /-viewVector.z/MAX_OCCLUSION_POINTS * POM_DEPTH) * clamp(1.0-pow(depthmap,2),0.1,1.0) ;
used_POM_DEPTH = 1.0;
#else
vec3 interval = viewVector.xyz /-viewVector.z/MAX_OCCLUSION_POINTS*POM_DEPTH;
#endif
vec3 coord = vec3(vtexcoord.st, 1.0);
coord += interval * used_POM_DEPTH;
float sumVec = 0.5;
for (int loopCount = 0; (loopCount < MAX_OCCLUSION_POINTS) && (1.0 - POM_DEPTH + POM_DEPTH * readNormal(coord.st).a ) < coord.p && coord.p >= 0.0; ++loopCount) {
coord = coord+interval * used_POM_DEPTH;
sumVec += 1.0 * used_POM_DEPTH;
}
if (coord.t < mincoord) {
if (readTexture(vec2(coord.s,mincoord)).a == 0.0) {
coord.t = mincoord;
discard;
}
}
adjustedTexCoord = mix(fract(coord.st)*vtexcoordam.pq+vtexcoordam.st, adjustedTexCoord, max(dist-MIX_OCCLUSION_DISTANCE,0.0)/(MAX_OCCLUSION_DISTANCE-MIX_OCCLUSION_DISTANCE));
vec3 truePos = fragpos + sumVec*inverse(tbnMatrix)*interval;
// #ifdef Depth_Write_POM
gl_FragDepth = toClipSpace3(truePos).z;
// #endif
}
}
#endif
////////////////////////////////
//////////////////////////////// ALBEDO
////////////////////////////////
vec4 Albedo = texture2DGradARB(texture, adjustedTexCoord.xy,dcdx,dcdy) * color;
#ifdef ENTITIES
if(NameTags == 1) Albedo = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color;
#endif
#ifdef WORLD
if (Albedo.a > 0.1) Albedo.a = normalMat.a;
else Albedo.a = 0.0;
#endif
#ifdef HAND
if (Albedo.a > 0.1) Albedo.a = 0.75;
else Albedo.a = 0.0;
#endif
////////////////////////////////
//////////////////////////////// NORMAL
////////////////////////////////
#ifdef MC_NORMAL_MAP
vec3 NormalTex = texture2DGradARB(normals, adjustedTexCoord.xy, dcdx,dcdy).rgb;
NormalTex.xy = NormalTex.xy*2.0-1.0;
NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0);
normal = applyBump(tbnMatrix,NormalTex, 1.0);
#endif
////////////////////////////////
//////////////////////////////// SPECULAR
////////////////////////////////
gl_FragData[2] = texture2DGradARB(specular, adjustedTexCoord.xy,dcdx,dcdy);
////////////////////////////////
//////////////////////////////// FINALIZE
////////////////////////////////
vec4 data1 = clamp(encode(viewToWorld(normal), lmtexcoord.zw),0.,1.0);
gl_FragData[0] = vec4(encodeVec2(Albedo.x,data1.x),encodeVec2(Albedo.y,data1.y),encodeVec2(Albedo.z,data1.z),encodeVec2(data1.w,Albedo.w));
gl_FragData[1].a = 0.0;
#else
////////////////////////////////
//////////////////////////////// NORMAL
////////////////////////////////
#ifdef MC_NORMAL_MAP
vec4 NormalTex = texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).rgba;
NormalTex.xy = NormalTex.xy*2.0-1.0;
NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0) ;
normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0);
#endif
////////////////////////////////
//////////////////////////////// SPECULAR
////////////////////////////////
vec4 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias);
gl_FragData[2] = SpecularTex;
////////////////////////////////
//////////////////////////////// ALBEDO
////////////////////////////////
vec4 Albedo = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color;
#ifdef WhiteWorld
Albedo.rgb = vec3(1.0);
#endif
#ifdef WORLD
if (Albedo.a > 0.1) Albedo.a = normalMat.a;
else Albedo.a = 0.0;
#endif
#ifdef HAND
if (Albedo.a > 0.1) Albedo.a = 0.75;
else Albedo.a = 0.0;
#endif
////////////////////////////////
//////////////////////////////// FINALIZE
////////////////////////////////
vec4 data1 = clamp( encode(viewToWorld(normal), blueNoise()*lmtexcoord.zw/50.0+lmtexcoord.zw ),0.0,1.0);
gl_FragData[0] = vec4(encodeVec2(Albedo.x,data1.x), encodeVec2(Albedo.y,data1.y), encodeVec2(Albedo.z,data1.z), encodeVec2(data1.w,Albedo.w));
#ifdef WORLD
gl_FragData[1].a = 0.0;
#endif
#endif
gl_FragData[3] = vec4(FlatNormals* 0.5 + 0.5,VanillaAO);
gl_FragData[4].x = 0;
#ifdef ENTITIES
gl_FragData[4].x = 1;
#endif
}