mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-04 00:23:41 +08:00
324 lines
9.5 KiB
GLSL
324 lines
9.5 KiB
GLSL
vec3 srgbToLinear2(vec3 srgb){
|
|
return mix(
|
|
srgb / 12.92,
|
|
pow(.947867 * srgb + .0521327, vec3(2.4) ),
|
|
step( .04045, srgb )
|
|
);
|
|
}
|
|
vec3 blackbody2(float Temp)
|
|
{
|
|
float t = pow(Temp, -1.5);
|
|
float lt = log(Temp);
|
|
|
|
vec3 col = vec3(0.0);
|
|
col.x = 220000.0 * t + 0.58039215686;
|
|
col.y = 0.39231372549 * lt - 2.44549019608;
|
|
col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y;
|
|
col.z = 0.76078431372 * lt - 5.68078431373;
|
|
col = clamp(col,0.0,1.0);
|
|
col = Temp < 1000. ? col * Temp * 0.001 : col;
|
|
|
|
return srgbToLinear2(col);
|
|
}
|
|
|
|
|
|
// Integer Hash - II
|
|
// - Inigo Quilez, Integer Hash - II, 2017
|
|
// https://www.shadertoy.com/view/XlXcW4
|
|
uvec3 iqint2(uvec3 x)
|
|
{
|
|
const uint k = 1103515245u;
|
|
|
|
x = ((x>>8U)^x.yzx)*k;
|
|
x = ((x>>8U)^x.yzx)*k;
|
|
x = ((x>>8U)^x.yzx)*k;
|
|
|
|
return x;
|
|
}
|
|
|
|
uvec3 hash(vec2 s)
|
|
{
|
|
|
|
uvec4 u = uvec4(s, uint(s.x) ^ uint(s.y), uint(s.x) + uint(s.y)); // Play with different values for 3rd and 4th params. Some hashes are okay with constants, most aren't.
|
|
|
|
return iqint2(u.xyz);
|
|
}
|
|
vec3 hash31(float p)
|
|
{
|
|
vec3 p3 = fract(vec3(p) * vec3(.1031, .1030, .0973));
|
|
p3 += dot(p3, p3.yzx+33.33);
|
|
return fract((p3.xxy+p3.yzz)*p3.zyx);
|
|
}
|
|
|
|
|
|
///////////////// POSITION
|
|
///////////////// POSITION
|
|
///////////////// POSITION
|
|
|
|
vec3 RandomPosition = hash31(frameTimeCounter);
|
|
vec3 ManualLightPos = vec3(ORB_X, ORB_Y, ORB_Z);
|
|
|
|
float densityAtPosFog(in vec3 pos){
|
|
pos /= 18.;
|
|
pos.xz *= 0.5;
|
|
|
|
vec3 p = floor(pos);
|
|
vec3 f = fract(pos);
|
|
|
|
f = (f*f) * (3.-2.*f);
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
vec2 coord = uv / 512.0;
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
return mix(xy.r,xy.g, f.y);
|
|
}
|
|
|
|
vec3 LightSourcePosition(vec3 WorldPos, vec3 CameraPos){
|
|
|
|
vec3 Origin = WorldPos ;
|
|
// make the swirl only happen within a radius
|
|
float SwirlBounds = clamp(sqrt(length(vec3(Origin.x,Origin.y-100,Origin.z)) / 150.0 - 1.0) ,0.0,1.0);
|
|
|
|
if( SwirlBounds < 1.0) {
|
|
Origin.y -= 200;
|
|
} else {
|
|
|
|
Origin = WorldPos - CameraPos - ManualLightPos;
|
|
float nosie = (densityAtPosFog(Origin / 30 + sin(frameTimeCounter/5)*100)-0.15) * 15 ;
|
|
Origin.xz += vec2( sin(nosie),-cos(nosie) )*50;
|
|
Origin.y -= sin(nosie)*100;
|
|
|
|
float cellSize = 100.0;
|
|
vec3 cellPos = CameraPos - vec3(0,10,0) ;
|
|
// cellPos += vec3(frameTimeCounter,0,0)*25.0;
|
|
|
|
Origin += (fract(cellPos/cellSize)*cellSize - cellSize*0.5);
|
|
}
|
|
|
|
return Origin;
|
|
}
|
|
|
|
///////////////// COLOR
|
|
///////////////// COLOR
|
|
///////////////// COLOR
|
|
vec3 LightSourceColor(float SwirlBounds){
|
|
|
|
vec3 Color = vec3(0.0);
|
|
|
|
if( SwirlBounds < 1.0) {
|
|
|
|
Color = vec3(0.5, 0.5, 1.0);
|
|
|
|
} else {
|
|
|
|
Color = vec3(ORB_R, ORB_G, ORB_B) * ORB_ColMult;
|
|
|
|
|
|
|
|
// Color *= blackbody2(RandomPosition.y*4000 + 1000);
|
|
|
|
float Timing = dot(RandomPosition, vec3(1.0/3.0));
|
|
float Flash = max(sin(frameTimeCounter) * cos(Timing) ,0.0);
|
|
Color *= Flash;
|
|
|
|
}
|
|
|
|
return Color;
|
|
}
|
|
|
|
///////////////// SHAPE
|
|
///////////////// SHAPE
|
|
///////////////// SHAPE
|
|
vec3 LightSourceShape(vec3 WorldPos){
|
|
|
|
vec3 Shapes = vec3(0.0);
|
|
vec3 Origin = WorldPos ;
|
|
|
|
// make the swirl only happen within a radius
|
|
float SwirlBounds = clamp(sqrt(length(Origin) / 200.0 - 1.0) ,0.0,1.0);
|
|
|
|
if( SwirlBounds < 1.0) {
|
|
|
|
// vec3 Origin = WorldPos;
|
|
Origin.y -= 200;
|
|
|
|
vec3 Origin2 = Origin;
|
|
Origin2.y += 100 ;
|
|
Origin2.y *= 0.8;
|
|
|
|
float Center = length(Origin);
|
|
float AltCenter = length(Origin2);
|
|
|
|
//////// STAGE 1
|
|
// when the ender dragon is alive, restrict the fog in this shape
|
|
// the max of a sphere is another smaller sphere. this creates a hollow sphere.
|
|
Shapes.r = max(1.0 - AltCenter / 75.0, max(AltCenter / 150.0 - 1.0, 0.0));
|
|
|
|
float radius = 200.0;
|
|
float thickness = 50.0 * radius;
|
|
Shapes.r = (thickness - clamp(pow(sqrt(pow(Origin2.x,2) + pow(Origin2.z,2)) - radius,2) + pow(Origin2.y*0.75,2.0) - radius,0,thickness)) / thickness ;
|
|
|
|
Shapes.r = max(Shapes.r, max(1.0 - AltCenter / 75.0, 0.0));
|
|
|
|
radius = 50.0;
|
|
thickness = 5.0 * radius;
|
|
Shapes.b = (thickness - clamp(pow(sqrt(pow(Origin2.x,2) + pow(Origin2.y,2)) - radius,2) + pow(Origin2.z*0.75,2.0) - radius,0,thickness)) / thickness ;
|
|
}
|
|
|
|
return Shapes;
|
|
}
|
|
|
|
|
|
|
|
|
|
float cloudVol(in vec3 pos, int LOD){
|
|
|
|
|
|
// THE OOOOOOOOOOOOOOOOOOOOOORB
|
|
vec3 Shapes = LightSourceShape(pos);
|
|
|
|
vec3 samplePos = pos*vec3(1.0,1./32.,1.0);
|
|
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
|
|
|
// #ifndef THE_ORB
|
|
// ender dragon battle area swirling effect.
|
|
// if(EndSequence2 < 1.0){
|
|
float radiance = 2.39996 + samplePos.y + frameTimeCounter/10;
|
|
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
|
|
|
// make the swirl only happen within a radius
|
|
float SwirlBounds = clamp(sqrt(length(vec3(pos.x,pos.y-100,pos.z)) / 200.0 - 1.0) ,0.0,1.0);
|
|
|
|
samplePos.xz = mix(samplePos.xz * rotationMatrix, samplePos.xz, SwirlBounds);
|
|
samplePos2.xz = mix(samplePos2.xz * rotationMatrix, samplePos2.xz, SwirlBounds);
|
|
// }
|
|
// #endif
|
|
|
|
samplePos2.y -= frameTimeCounter/15;
|
|
|
|
float finalfog = 0;
|
|
|
|
finalfog += max(0.6-densityAtPosFog(samplePos * 16.0) * 2,0.0);
|
|
// finalfog = exp(finalfog*5)-1;
|
|
|
|
float smallnoise = max(densityAtPosFog(samplePos2 * (160. - finalfog*3))-0.1,0.0);
|
|
finalfog -= ((1-smallnoise) - max(0.15 - abs(smallnoise * 2.0 - 0.55) * 0.5,0.0)*1.5) * 0.3;
|
|
|
|
// make the eye of the swirl have no fog, so you can actually see.
|
|
finalfog = max(finalfog - Shapes.r, 0.0);
|
|
|
|
// dragon death sequence
|
|
// finalfog = Shapes.b;
|
|
|
|
|
|
return finalfog;
|
|
}
|
|
|
|
|
|
mat2x3 getVolumetricRays(float dither,vec3 fragpos,float dither2) {
|
|
int SAMPLES = 16;
|
|
//project pixel position into projected shadowmap space
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
|
|
//project view origin into projected shadowmap space
|
|
vec3 start = vec3(0.0);
|
|
|
|
//rayvector into projected shadow map space
|
|
//we can use a projected vector because its orthographic projection
|
|
//however we still have to send it to curved shadow map space every step
|
|
vec3 dV = (fragposition-start);
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
float maxLength = min(length(dVWorld),32.0 * 12.0)/length(dVWorld);
|
|
dV *= maxLength;
|
|
dVWorld *= maxLength;
|
|
|
|
//apply dither
|
|
vec3 progress = start.xyz;
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
|
vec3 vL = vec3(0.);
|
|
float dL = length(dVWorld);
|
|
|
|
vec3 absorbance = vec3(1.0);
|
|
float expFactor = 11.0;
|
|
|
|
vec3 fogColor = (gl_Fog.color.rgb / pow(dot(gl_Fog.color.rgb,vec3(0.3333)),1.1) ) ;
|
|
|
|
|
|
for (int i=0;i<SAMPLES;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither)/float(SAMPLES)) * log(expFactor) / float(SAMPLES)/(expFactor-1.0);
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
float densityVol = cloudVol(progressW,1);
|
|
float density = min(densityVol,0.1);
|
|
float air = 0.005;
|
|
|
|
/// THE OOOOOOOOOOOOOOOOOOOOOORB
|
|
vec3 LightColor = LightSourceColor(clamp(sqrt(length(vec3(progressW.x,progressW.y-100,progressW.z)) / 150.0 - 1.0) ,0.0,1.0));
|
|
|
|
vec3 LightPos = LightSourcePosition(progressW, cameraPosition);
|
|
// float OrbMie = exp(length(LightPos) * -0.03) * 64.0;
|
|
|
|
// float OrbMie = max(exp2(4.0 + length(LightPos) / -20),0.0);
|
|
|
|
|
|
float OrbMie = max(1.0-length(LightPos)/200,0.0);
|
|
float N = 2.50;
|
|
OrbMie = pow(1.0-pow(1.0-OrbMie,1.0/N),N);
|
|
OrbMie *= 10.0;
|
|
// LightColor *= OrbMie;
|
|
|
|
float CastLight = 0.0;
|
|
for (int j=0; j < 3; j++){
|
|
vec3 shadowSamplePos = progressW - LightPos * (pow(j+dither2/3,0.75)*0.3);
|
|
// vec3 shadowSamplePos = progressW - LightPos * (pow(j+dither2,0.75)*0.25);
|
|
|
|
float densityVol2 = cloudVol(shadowSamplePos,1);
|
|
CastLight += densityVol2;
|
|
}
|
|
|
|
|
|
vec3 CastedLight = LightColor * OrbMie * exp(CastLight * 15 * (LightColor*(1.0-CastLight/3)-1.50)) ;
|
|
CastedLight += (LightColor * vec3(1.0,1.3,1.0)) * exp(abs(densityVol*2.0 - 0.3) * 15 * (LightColor*CastLight)) * (max(OrbMie - density*10,0.0)/10);
|
|
|
|
// #ifdef THE_ORB
|
|
// density += clamp((1.0 - length(LightPos) / 10.0) * 10 ,0.0,1.0) ;
|
|
// #endif
|
|
|
|
vec3 AmbientLight = fogColor * 0.05 * pow(exp(density * -2),20);
|
|
|
|
vec3 vL0 = AmbientLight + CastedLight;
|
|
|
|
vec3 vL1 = vec3(0.5,0.75,1.0) * 0.05 ;
|
|
// vL1 += (LightColor* vec3(1.0,1.3,1.0)) * max(LightColor - (exp(CastLight * 5)-OrbMie),0.0) * OrbMie;
|
|
|
|
vL += (vL0 - vL0*exp(-density*dd*dL)) * absorbance;
|
|
vL += (vL1 - vL1*exp(-air*dd*dL)) * absorbance;
|
|
|
|
absorbance *= exp(-(density+air)*dd*dL);
|
|
}
|
|
return mat2x3(vL,absorbance);
|
|
}
|
|
|
|
float GetCloudShadow(vec3 WorldPos, vec3 LightPos, float noise){
|
|
float Shadow = 0.0;
|
|
|
|
for (int i=0; i < 3; i++){
|
|
|
|
vec3 shadowSamplePos = WorldPos - LightPos * (0.25 + pow(i,0.75)*0.25);
|
|
float Cast = cloudVol(shadowSamplePos,1);
|
|
Shadow += Cast;
|
|
}
|
|
|
|
return clamp(exp(-Shadow*5),0.0,1.0);
|
|
// return (Shadow);
|
|
}
|
|
float GetCloudShadow2(vec3 WorldPos){
|
|
|
|
float Shadow = cloudVol(WorldPos,1);
|
|
|
|
return clamp( exp2(Shadow * -3),0.0,1.0);
|
|
} |