Bliss-Shader/shaders/dimensions/DH_translucent.fsh
2024-11-16 18:15:48 +01:00

474 lines
14 KiB
GLSL

#include "/lib/settings.glsl"
#include "/lib/util.glsl"
#include "/lib/res_params.glsl"
#include "/lib/color_transforms.glsl"
#include "/lib/projections.glsl"
#ifdef OVERWORLD_SHADER
#define WATER_SUN_SPECULAR
#endif
uniform vec2 texelSize;
// uniform int moonPhase;
uniform float frameTimeCounter;
uniform sampler2D noisetex;
const bool shadowHardwareFiltering = true;
uniform sampler2DShadow shadow;
#ifdef DISTANT_HORIZONS
uniform sampler2D dhDepthTex;
uniform sampler2D dhDepthTex1;
#endif
uniform sampler2D depthtex0;
uniform sampler2D depthtex1;
uniform sampler2D colortex12;
// uniform sampler2D colortex7;
uniform sampler2D colortex4;
uniform sampler2D colortex5;
#include "/lib/sky_gradient.glsl"
#include "/lib/waterBump.glsl"
#include "/lib/Shadow_Params.glsl"
varying vec4 pos;
varying vec4 gcolor;
varying vec4 normals_and_materials;
varying vec2 lightmapCoords;
flat varying int isWater;
// uniform float far;
uniform float dhFarPlane;
uniform float dhNearPlane;
uniform vec3 previousCameraPosition;
// uniform vec3 cameraPosition;
// uniform mat4 gbufferModelView;
uniform mat4 gbufferPreviousModelView;
// uniform mat4 shadowModelView;
// uniform mat4 shadowModelViewInverse;
// uniform mat4 shadowProjection;
// uniform mat4 shadowProjectionInverse;
uniform int frameCounter;
// uniform sampler2D colortex4;
flat varying vec3 averageSkyCol_Clouds;
flat varying vec4 lightCol;
flat varying vec3 WsunVec;
flat varying vec3 WsunVec2;
// uniform mat4 dhPreviousProjection;
// uniform mat4 dhProjectionInverse;
// uniform mat4 dhProjection;
#include "/lib/DistantHorizons_projections.glsl"
vec3 DH_toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(dhProjectionInverse[0].x, dhProjectionInverse[1].y, dhProjectionInverse[2].zw);
vec3 feetPlayerPos = p * 2. - 1.;
vec4 viewPos = iProjDiag * feetPlayerPos.xyzz + dhProjectionInverse[3];
return viewPos.xyz / viewPos.w;
}
vec3 DH_toClipSpace3(vec3 viewSpacePosition) {
return projMAD(dhProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
}
uniform float near;
float invLinZ (float lindepth){
return -((2.0*near/lindepth)-far-near)/(far-near);
}
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
// float DH_ld(float dist) {
// return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
// }
// float DH_invLinZ (float lindepth){
// return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
// }
float DH_ld(float dist) {
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
}
float DH_inv_ld (float lindepth){
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
}
float linearizeDepthFast(const in float depth, const in float near, const in float far) {
return (near * far) / (depth * (near - far) + far);
}
uniform int isEyeInWater;
uniform float rainStrength;
#ifdef OVERWORLD_SHADER
#ifdef Daily_Weather
flat varying vec4 dailyWeatherParams0;
flat varying vec4 dailyWeatherParams1;
#else
vec4 dailyWeatherParams0 = vec4(CloudLayer0_coverage, CloudLayer1_coverage, CloudLayer2_coverage, 0.0);
vec4 dailyWeatherParams1 = vec4(CloudLayer0_density, CloudLayer1_density, CloudLayer2_density, 0.0);
#endif
#define CLOUDSHADOWSONLY
#include "/lib/volumetricClouds.glsl"
#endif
#ifndef OVERWORLD_SHADER
#undef WATER_SUN_SPECULAR
#endif
float GGX(vec3 n, vec3 v, vec3 l, float r, float f0) {
r = max(pow(r,2.5), 0.0001);
vec3 h = l + v;
float hn = inversesqrt(dot(h, h));
float dotLH = clamp(dot(h,l)*hn,0.,1.);
float dotNH = clamp(dot(h,n)*hn,0.,1.) ;
float dotNL = clamp(dot(n,l),0.,1.);
float dotNHsq = dotNH*dotNH;
float denom = dotNHsq * r - dotNHsq + 1.;
float D = r / (3.141592653589793 * denom * denom);
float F = f0 + (1. - f0) * exp2((-5.55473*dotLH-6.98316)*dotLH);
float k2 = .25 * r;
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
}
uniform int framemod8;
#include "/lib/TAA_jitter.glsl"
// float DH_ld(float dist) {
// return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
// }
// float DH_invLinZ (float lindepth){
// return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
// }
// float linearizeDepthFast(const in float depth, const in float near, const in float far) {
// return (near * far) / (depth * (near - far) + far);
// }
// uniform float far;
vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater){
float quality = mix(5,SSR_STEPS,fresnel);
vec3 clipPosition = DH_toClipSpace3(position);
float rayLength = ((position.z + dir.z * dhFarPlane*sqrt(3.)) > -dhNearPlane) ?
(-dhNearPlane - position.z) / dir.z : dhFarPlane*sqrt(3.);
vec3 direction = normalize(DH_toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
direction.xy = normalize(direction.xy);
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z);
vec3 stepv = direction * mult / quality * vec3(RENDER_SCALE,1.0);
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither;
float minZ = clipPosition.z;
float maxZ = spos.z+stepv.z*0.5;
spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE;
for (int i = 0; i <= int(quality); i++) {
// float sp = DH_inv_ld(sqrt(texelFetch2D(colortex12,ivec2(spos.xy/texelSize/4),0).a/65000.0));
float sp = DH_inv_ld(sqrt(texelFetch2D(colortex12,ivec2(spos.xy/texelSize/4),0).a/64000.0));
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp);
spos += stepv;
//small bias
minZ = maxZ-0.0000035/DH_ld(spos.z);
maxZ += stepv.z;
}
return vec3(1.1);
}
float interleaved_gradientNoise_temporal(){
#ifdef TAA
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y ) + 1.0/1.6180339887 * frameCounter);
#else
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y ) + 1.0/1.6180339887);
#endif
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
float R2_dither(){
vec2 coord = gl_FragCoord.xy ;
#ifdef TAA
coord += + (frameCounter%40000) * 2.0;
#endif
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
}
vec3 viewToWorld(vec3 viewPos) {
vec4 pos;
pos.xyz = viewPos;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec4 encode (vec3 n, vec2 lightmaps){
n.xy = n.xy / dot(abs(n), vec3(1.0));
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
}
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){
float bumpmult = puddle_values;
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
//
return normalize(bump*tbnMatrix);
}
#define FORWARD_SPECULAR
#define FORWARD_ENVIORNMENT_REFLECTION
#define FORWARD_BACKGROUND_REFLECTION
#define FORWARD_ROUGH_REFLECTION
/* RENDERTARGETS:2,7 */
void main() {
if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 ) {
bool iswater = isWater > 0;
float material = 0.7;
if(iswater) material = 1.0;
vec3 normals = normals_and_materials.xyz;
vec3 viewPos = pos.xyz;
vec3 playerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
float transition = exp(-25* pow(clamp(1.0 - length(playerPos)/(far-8),0.0,1.0),2));
#ifdef DH_OVERDRAW_PREVENTION
#if OVERDRAW_MAX_DISTANCE == 0
float maxOverdrawDistance = far;
#else
float maxOverdrawDistance = OVERDRAW_MAX_DISTANCE;
#endif
if(length(playerPos) < clamp(far-16*4, 16, maxOverdrawDistance) ){ discard; return;}
#endif
if(iswater && abs(normals.y) > 0.0){
vec3 posxz = playerPos+cameraPosition;
vec3 bump = normalize(getWaveNormal(posxz, true));
float bumpmult = 10.0 * WATER_WAVE_STRENGTH;
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
normals.xz = bump.xy;
}
normals = worldToView(normals);
gl_FragData[0] = gcolor;
// float UnchangedAlpha = gl_FragData[0].a;
#ifdef WhiteWorld
gl_FragData[0].rgb = vec3(0.5);
gl_FragData[0].a = 1.0;
#endif
vec3 Albedo = toLinear(gl_FragData[0].rgb);
#ifndef WhiteWorld
#ifndef Vanilla_like_water
if (iswater){
Albedo = vec3(0.0);
gl_FragData[0].a = 1.0/255.0;
}
#endif
#endif
// diffuse
vec3 Indirect_lighting = vec3(0.0);
// vec3 MinimumLightColor = vec3(1.0);
// if(isEyeInWater == 1) MinimumLightColor = vec3(10.0);
vec3 Direct_lighting = vec3(0.0);
#ifdef OVERWORLD_SHADER
vec3 DirectLightColor = lightCol.rgb/2400.0;
float NdotL = clamp(dot(normals, normalize(WsunVec2)),0.0,1.0);
NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0);
float Shadows = 1.0;
#ifdef DISTANT_HORIZONS_SHADOWMAP
vec3 feetPlayerPos_shadow = mat3(gbufferModelViewInverse) * pos.xyz + gbufferModelViewInverse[3].xyz;
vec3 projectedShadowPosition = mat3(shadowModelView) * feetPlayerPos_shadow + shadowModelView[3].xyz;
projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
//apply distortion
#ifdef DISTORT_SHADOWMAP
float distortFactor = calcDistort(projectedShadowPosition.xy);
projectedShadowPosition.xy *= distortFactor;
#else
float distortFactor = 1.0;
#endif
float smallbias = -0.0035;
bool ShadowBounds = abs(projectedShadowPosition.x) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.y) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.z) < 6.0;
if(ShadowBounds){
Shadows = 0.0;
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5);
Shadows = shadow2D(shadow, projectedShadowPosition + vec3(0.0,0.0, smallbias)).x;
}
#endif
#ifdef CLOUDS_SHADOWS
Shadows *= GetCloudShadow(playerPos + cameraPosition, WsunVec);
#endif
Direct_lighting = DirectLightColor * NdotL * Shadows;
vec3 AmbientLightColor = averageSkyCol_Clouds/900.0;
vec3 ambientcoefs = normals_and_materials.xyz / dot(abs(normals_and_materials.xyz), vec3(1.0));
float SkylightDir = ambientcoefs.y*1.5;
float skylight = max(pow(viewToWorld(normals_and_materials.xyz).y*0.5+0.5,0.1) + SkylightDir, 0.2);
AmbientLightColor *= skylight;
#endif
#ifndef OVERWORLD_SHADER
vec3 AmbientLightColor = vec3(0.5);
#endif
Indirect_lighting = AmbientLightColor;
vec3 FinalColor = (Indirect_lighting + Direct_lighting) * Albedo;
// specular
#ifdef FORWARD_SPECULAR
vec3 Reflections_Final = vec3(0.0);
vec4 Reflections = vec4(0.0);
vec3 BackgroundReflection = FinalColor;
vec3 SunReflection = vec3(0.0);
float roughness = 0.035;
float f0 = 0.02;
// f0 = 0.9;
vec3 reflectedVector = reflect(normalize(viewPos), normals);
float normalDotEye = dot(normals, normalize(viewPos));
float fresnel = pow(clamp(1.0 + normalDotEye, 0.0, 1.0),5.0);
fresnel = mix(f0, 1.0, fresnel);
#ifdef SNELLS_WINDOW
if(isEyeInWater == 1) fresnel = pow(clamp(1.5 + normalDotEye,0.0,1.0), 25.0);
#endif
#if defined FORWARD_ENVIORNMENT_REFLECTION && defined DH_SCREENSPACE_REFLECTIONS
vec3 rtPos = rayTrace(reflectedVector, viewPos, interleaved_gradientNoise_temporal(), fresnel, false);
if (rtPos.z < 1.){
vec3 previousPosition = mat3(gbufferModelViewInverse) * DH_toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
previousPosition.xy = projMAD(dhPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
Reflections.a = 1.0;
Reflections.rgb = texture2D(colortex5, previousPosition.xy).rgb;
}
}
#endif
#ifdef FORWARD_BACKGROUND_REFLECTION
BackgroundReflection = skyCloudsFromTex(mat3(gbufferModelViewInverse) * reflectedVector, colortex4).rgb / 1200.0;
#endif
#ifdef WATER_SUN_SPECULAR
SunReflection = (DirectLightColor * Shadows) * GGX(normalize(normals), -normalize(viewPos), normalize(WsunVec2), roughness, f0) * (1.0-Reflections.a);
#endif
Reflections_Final = mix(BackgroundReflection, Reflections.rgb, Reflections.a) * fresnel;
Reflections_Final += SunReflection;
//correct alpha channel with fresnel
float alpha0 = gl_FragData[0].a;
gl_FragData[0].a = -gl_FragData[0].a * fresnel + gl_FragData[0].a + fresnel;
// prevent reflections from being darkened by buffer blending
gl_FragData[0].rgb = clamp(FinalColor / gl_FragData[0].a*alpha0*(1.0-fresnel) * 0.1 + Reflections_Final / gl_FragData[0].a * 0.1,0.0,65100.0);
if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.0);
#else
gl_FragData[0].rgb = FinalColor*0.1;
#endif
#ifdef DH_OVERDRAW_PREVENTION
float distancefade = min(max(1.0 - length(playerPos)/clamp(far-16*4, 16, maxOverdrawDistance),0.0)*5,1.0);
if(texture2D(depthtex0, gl_FragCoord.xy*texelSize).x < 1.0 || distancefade > 0.0){
gl_FragData[0].a = 0.0;
material = 0.0;
}
#endif
#if DEBUG_VIEW == debug_DH_WATER_BLENDING
if(gl_FragCoord.x*texelSize.x > 0.53) gl_FragData[0] = vec4(0.0);
#endif
gl_FragData[1] = vec4(Albedo, material);
}
}