Bliss-Shader/shaders/dimensions/all_translucent.fsh

847 lines
26 KiB
GLSL

#include "/lib/settings.glsl"
// #if defined END_SHADER || defined NETHER_SHADER
// #undef IS_LPV_ENABLED
// #endif
#ifdef IS_LPV_ENABLED
#extension GL_EXT_shader_image_load_store: enable
#extension GL_ARB_shading_language_packing: enable
#endif
#include "/lib/res_params.glsl"
varying vec4 lmtexcoord;
varying vec4 color;
uniform vec4 entityColor;
#ifdef OVERWORLD_SHADER
const bool shadowHardwareFiltering = true;
uniform sampler2DShadow shadow;
#ifdef TRANSLUCENT_COLORED_SHADOWS
uniform sampler2D shadowcolor0;
uniform sampler2DShadow shadowtex0;
uniform sampler2DShadow shadowtex1;
#endif
uniform float lightSign;
flat varying vec3 WsunVec;
flat varying vec3 averageSkyCol_Clouds;
flat varying vec4 lightCol;
#endif
flat varying float HELD_ITEM_BRIGHTNESS;
const bool colortex4MipmapEnabled = true;
uniform sampler2D noisetex;
uniform sampler2D depthtex1;
uniform sampler2D depthtex0;
#ifdef DISTANT_HORIZONS
uniform sampler2D dhDepthTex1;
#endif
uniform sampler2D colortex7;
uniform sampler2D colortex12;
uniform sampler2D colortex14;
uniform sampler2D colortex5;
uniform sampler2D colortex3;
uniform sampler2D colortex4;
uniform sampler2D colortex6;
uniform sampler2D texture;
uniform sampler2D specular;
uniform sampler2D normals;
#ifdef IS_LPV_ENABLED
uniform usampler1D texBlockData;
uniform sampler3D texLpv1;
uniform sampler3D texLpv2;
#endif
varying vec4 tangent;
varying vec4 normalMat;
varying vec3 binormal;
varying vec3 flatnormal;
#ifdef LARGE_WAVE_DISPLACEMENT
varying vec3 shitnormal;
#endif
flat varying float exposure;
uniform vec3 sunVec;
uniform float near;
// uniform float far;
uniform float sunElevation;
uniform int isEyeInWater;
uniform float rainStrength;
uniform float skyIntensityNight;
uniform float skyIntensity;
uniform ivec2 eyeBrightnessSmooth;
uniform int frameCounter;
uniform float frameTimeCounter;
uniform vec2 texelSize;
uniform int framemod8;
uniform mat4 gbufferPreviousModelView;
uniform vec3 previousCameraPosition;
uniform float moonIntensity;
uniform float sunIntensity;
uniform vec3 sunColor;
uniform vec3 nsunColor;
#include "/lib/util.glsl"
#include "/lib/Shadow_Params.glsl"
#include "/lib/color_transforms.glsl"
#include "/lib/projections.glsl"
#include "/lib/sky_gradient.glsl"
#include "/lib/waterBump.glsl"
#ifdef OVERWORLD_SHADER
flat varying float Flashing;
#include "/lib/lightning_stuff.glsl"
#define CLOUDSHADOWSONLY
#include "/lib/volumetricClouds.glsl"
#else
uniform float nightVision;
#endif
#ifdef END_SHADER
#include "/lib/end_fog.glsl"
#endif
#ifdef IS_LPV_ENABLED
uniform int heldItemId;
uniform int heldItemId2;
#include "/lib/hsv.glsl"
#include "/lib/lpv_common.glsl"
#include "/lib/lpv_render.glsl"
#endif
#include "/lib/diffuse_lighting.glsl"
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
vec4 blueNoise(vec2 coord){
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
}
float interleaved_gradientNoise_temporal(){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
float R2_dither(){
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
}
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
vec2(-1.,3.)/8.,
vec2(5.0,1.)/8.,
vec2(-3,-5.)/8.,
vec2(-5.,5.)/8.,
vec2(-7.,-1.)/8.,
vec2(3,7.)/8.,
vec2(7.,-7.)/8.);
#define PW_DEPTH 1.5 //[0.5 1.0 1.5 2.0 2.5 3.0]
#define PW_POINTS 2 //[2 4 6 8 16 32]
varying vec3 viewVector;
vec3 getParallaxDisplacement(vec3 posxz) {
vec3 parallaxPos = posxz;
vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH;
// float waterHeight = (1.0 - (getWaterHeightmap(posxz.xz)*0.5+0.5)) * 2.0 - 1.0;
float waterHeight = getWaterHeightmap(posxz.xz) * 2.0;
parallaxPos.xz -= waterHeight * vec;
return parallaxPos;
}
vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){
float bumpmult = puddle_values;
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
//
return normalize(bump*tbnMatrix);
}
vec2 CleanSample(
int samples, float totalSamples, float noise
){
// this will be used to make 1 full rotation of the spiral. the mulitplication is so it does nearly a single rotation, instead of going past where it started
float variance = noise * 0.897;
// for every sample input, it will have variance applied to it.
float variedSamples = float(samples) + variance;
// for every sample, the sample position must change its distance from the origin.
// otherwise, you will just have a circle.
float spiralShape = pow(variedSamples / (totalSamples + variance),0.5);
float shape = 2.26; // this is very important. 2.26 is very specific
float theta = variedSamples * (PI * shape);
float x = cos(theta) * spiralShape;
float y = sin(theta) * spiralShape;
return vec2(x, y);
}
vec3 viewToWorld(vec3 viewPos) {
vec4 pos;
pos.xyz = viewPos;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec4 encode (vec3 n, vec2 lightmaps){
n.xy = n.xy / dot(abs(n), vec3(1.0));
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
}
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
float invLinZ (float lindepth){
return -((2.0*near/lindepth)-far-near)/(far-near);
}
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater, inout float reflectLength){
float quality = mix(15,SSR_STEPS,fresnel);
// quality = SSR_STEPS;
vec3 clipPosition = toClipSpace3(position);
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
(-near -position.z) / dir.z : far*sqrt(3.);
vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
direction.xy = normalize(direction.xy);
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z);
vec3 stepv = direction * mult / quality * vec3(RENDER_SCALE,1.0);
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither;
float minZ = clipPosition.z;
float maxZ = spos.z+stepv.z*0.5;
spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE;
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
for (int i = 0; i <= int(quality); i++) {
// decode depth buffer
// float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0);
float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4.0),0).a/65000.0);
sp = invLinZ(sp);
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp);
spos += stepv;
//small bias
if(inwater) {
minZ = maxZ-0.00035/ld(spos.z);
}else{
minZ = maxZ-0.0001/max(ld(spos.z), (0.0 + position.z*position.z*0.001));
}
maxZ += stepv.z;
reflectLength += 1.0 / quality; // for shit
}
return vec3(1.1);
}
float GGX(vec3 n, vec3 v, vec3 l, float r, float f0) {
r = max(pow(r,2.5), 0.0001);
vec3 h = l + v;
float hn = inversesqrt(dot(h, h));
float dotLH = clamp(dot(h,l)*hn,0.,1.);
float dotNH = clamp(dot(h,n)*hn,0.,1.) ;
float dotNL = clamp(dot(n,l),0.,1.);
float dotNHsq = dotNH*dotNH;
float denom = dotNHsq * r - dotNHsq + 1.;
float D = r / (3.141592653589793 * denom * denom);
float F = f0 + (1. - f0) * exp2((-5.55473*dotLH-6.98316)*dotLH);
float k2 = .25 * r;
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
}
uniform float dhFarPlane;
#include "/lib/DistantHorizons_projections.glsl"
// #undef BASIC_SHADOW_FILTER
#ifdef OVERWORLD_SHADER
float ComputeShadowMap(inout vec3 directLightColor, vec3 playerPos, float maxDistFade, float noise){
if(maxDistFade <= 0.0) return 1.0;
// setup shadow projection
vec3 projectedShadowPosition = mat3(shadowModelView) * playerPos + shadowModelView[3].xyz;
projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
// un-distort
#ifdef DISTORT_SHADOWMAP
float distortFactor = calcDistort(projectedShadowPosition.xy);
projectedShadowPosition.xy *= distortFactor;
#else
float distortFactor = 1.0;
#endif
// hamburger
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5);
float shadowmap = 0.0;
vec3 translucentTint = vec3(0.0);
#ifndef HAND
projectedShadowPosition.z -= 0.0001;
#endif
#if defined ENTITIES
projectedShadowPosition.z -= 0.0002;
#endif
#ifdef BASIC_SHADOW_FILTER
int samples = int(SHADOW_FILTER_SAMPLE_COUNT * 0.5);
float rdMul = 14.0*distortFactor*d0*k/shadowMapResolution;
for(int i = 0; i < samples; i++){
vec2 offsetS = CleanSample(i, samples - 1, noise) * 0.3;
projectedShadowPosition.xy += rdMul*offsetS;
#else
int samples = 1;
#endif
#ifdef TRANSLUCENT_COLORED_SHADOWS
// determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth
float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z) * 2.0,0.0,1.0),2.0);
// get opaque shadow data to get opaque data from translucent shadows.
float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x;
shadowmap += max(opaqueShadow, shadowDepthDiff);
// get translucent shadow data
vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy);
// this curve simply looked the nicest. it has no other meaning.
float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2);
// normalize the color to remove luminance, and keep the hue. remove all opaque color.
// mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster.
translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * shadowAlpha;
// make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0
translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff);
#else
shadowmap += shadow2D(shadow, projectedShadowPosition).x;
#endif
#ifdef BASIC_SHADOW_FILTER
}
#endif
#ifdef TRANSLUCENT_COLORED_SHADOWS
// tint the lightsource color with the translucent shadow color
directLightColor *= mix(vec3(1.0), translucentTint.rgb / samples, maxDistFade);
#endif
return mix(1.0, shadowmap / samples, maxDistFade);
}
#endif
void convertHandDepth(inout float depth) {
float ndcDepth = depth * 2.0 - 1.0;
ndcDepth /= MC_HAND_DEPTH;
depth = ndcDepth * 0.5 + 0.5;
}
void Emission(
inout vec3 Lighting,
vec3 Albedo,
float Emission,
float exposure
){
float autoBrightnessAdjust = mix(5.0, 100.0, clamp(exp(-10.0*exposure),0.0,1.0));
if( Emission < 254.5/255.0) Lighting = mix(Lighting, Albedo * Emissive_Brightness * autoBrightnessAdjust * 0.1, pow(Emission, Emissive_Curve)); // old method.... idk why
}
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
/* RENDERTARGETS:2,7,11,14 */
void main() {
if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 ) {
vec3 FragCoord = gl_FragCoord.xyz;
#ifdef HAND
convertHandDepth(FragCoord.z);
#endif
vec2 tempOffset = offsets[framemod8];
vec3 viewPos = toScreenSpace(FragCoord*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5, 0.0));
vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos;
////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// MATERIAL MASKS ////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
float MATERIALS = normalMat.w;
// 1.0 = water mask
// 0.9 = entity mask
// 0.8 = reflective entities
// 0.7 = reflective blocks
// 0.1 = hand mask
#ifdef HAND
MATERIALS = 0.1;
#endif
// bool isHand = abs(MATERIALS - 0.1) < 0.01;
bool isWater = MATERIALS > 0.99;
bool isReflectiveEntity = abs(MATERIALS - 0.8) < 0.01;
bool isReflective = abs(MATERIALS - 0.7) < 0.01 || isWater || isReflectiveEntity;
bool isEntity = abs(MATERIALS - 0.9) < 0.01 || isReflectiveEntity;
////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// ALBEDO /////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
gl_FragData[0] = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color;
float UnchangedAlpha = gl_FragData[0].a;
#ifdef WhiteWorld
gl_FragData[0].rgb = vec3(0.5);
gl_FragData[0].a = 1.0;
#endif
vec3 Albedo = toLinear(gl_FragData[0].rgb);
#ifndef WhiteWorld
#ifdef Vanilla_like_water
if (isWater) Albedo *= sqrt(luma(Albedo));
#else
if (isWater){
Albedo = vec3(0.0);
gl_FragData[0].a = 1.0/255.0;
}
#endif
#endif
#ifdef ENTITIES
Albedo.rgb = mix(Albedo.rgb, entityColor.rgb, clamp(entityColor.a*1.5,0,1));
#endif
vec4 GLASS_TINT_COLORS = vec4(Albedo, UnchangedAlpha);
#ifdef BIOME_TINT_WATER
if (isWater) GLASS_TINT_COLORS.rgb = toLinear(color.rgb);
#endif
////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// NORMALS ///////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
vec3 normal = normalMat.xyz; // in viewSpace
#ifdef LARGE_WAVE_DISPLACEMENT
if (isWater){
normal = viewToWorld(normal) ;
normal.xz = shitnormal.xy;
normal = worldToView(normal);
}
#endif
vec3 worldSpaceNormal = viewToWorld(normal).xyz;
vec2 TangentNormal = vec2(0); // for refractions
vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w);
mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x,
tangent.y, tangent2.y, normal.y,
tangent.z, tangent2.z, normal.z);
vec3 NormalTex = vec3(texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).xy,0.0);
NormalTex.xy = NormalTex.xy*2.0-1.0;
NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0) ;
// tangent space normals for refraction
TangentNormal = NormalTex.xy*0.5+0.5;
#ifndef HAND
if (isWater){
vec3 posxz = (mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz) + cameraPosition;
// make the waves flow in the direction the water faces, except for perfectly up facing parts.
if(abs(worldSpaceNormal.y) < 0.9995) posxz.xz -= (posxz.y + frameTimeCounter*3 * WATER_WAVE_SPEED) * normalize(worldSpaceNormal.xz) ;
posxz.xyz = getParallaxDisplacement(posxz);
vec3 bump = normalize(getWaveNormal(posxz, false));
float bumpmult = 10.0 * WATER_WAVE_STRENGTH;
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
NormalTex.xyz = bump;
// tangent space normals for refraction
TangentNormal = (bump.xy/3.0)*0.5+0.5;
}
#endif
normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0);
gl_FragData[2] = vec4(encodeVec2(TangentNormal), encodeVec2(GLASS_TINT_COLORS.rg), encodeVec2(GLASS_TINT_COLORS.ba), 1.0);
////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// SPECULARS /////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
vec3 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rga;
////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// DIFFUSE LIGHTING //////////////////////////////
////////////////////////////////////////////////////////////////////////////////
vec2 lightmap = lmtexcoord.zw;
// lightmap.y = 1.0;
#ifndef OVERWORLD_SHADER
lightmap.y = 1.0;
#endif
#ifdef Hand_Held_lights
lightmap.x = max(lightmap.x, HELD_ITEM_BRIGHTNESS*clamp( pow(max(1.0-length(feetPlayerPos)/HANDHELD_LIGHT_RANGE,0.0),1.5),0.0,1.0));
#endif
vec3 Indirect_lighting = vec3(0.0);
vec3 MinimumLightColor = vec3(1.0);
if(isEyeInWater == 1) MinimumLightColor = vec3(10.0);
vec3 Direct_lighting = vec3(0.0);
#ifdef OVERWORLD_SHADER
vec3 DirectLightColor = lightCol.rgb/80.0;
float NdotL = clamp(dot(normal, normalize(WsunVec*mat3(gbufferModelViewInverse))),0.0,1.0); NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0);
float Shadows = 1.0;
float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / (shadowDistance+16),0.0)*5.0,1.0));
float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / shadowDistance,0.0)*5.0,1.0));
float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0);
vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
Shadows = ComputeShadowMap(DirectLightColor, shadowPlayerPos, shadowMapFalloff, blueNoise());
Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff2);
Shadows *= pow(GetCloudShadow(feetPlayerPos),3);
Direct_lighting = DirectLightColor * NdotL * Shadows;
vec3 AmbientLightColor = averageSkyCol_Clouds/30.0;
vec3 ambientcoefs = worldSpaceNormal / dot(abs(worldSpaceNormal), vec3(1.0));
float SkylightDir = ambientcoefs.y*1.5;
float skylight = max(pow(viewToWorld(flatnormal).y*0.5+0.5,0.1) + SkylightDir, 0.2);
AmbientLightColor *= skylight;
#endif
#ifdef NETHER_SHADER
// vec3 AmbientLightColor = skyCloudsFromTexLOD2(worldSpaceNormal, colortex4, 6).rgb / 15.0;
// vec3 up = skyCloudsFromTexLOD2(vec3( 0, 1, 0), colortex4, 6).rgb/ 30.0;
// vec3 down = skyCloudsFromTexLOD2(vec3( 0,-1, 0), colortex4, 6).rgb/ 30.0;
// up *= pow( max( worldSpaceNormal.y, 0), 2);
// down *= pow( max(-worldSpaceNormal.y, 0), 2);
// AmbientLightColor += up + down;
vec3 AmbientLightColor = vec3(0.1);
#endif
#ifdef END_SHADER
float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0);
vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds);
float lightningflash = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0;
vec3 lightColors = LightSourceColors(vortexBounds, lightningflash);
float NdotL = clamp(dot(worldSpaceNormal, normalize(-lightPos))*0.5+0.5,0.0,1.0);
NdotL *= NdotL;
Direct_lighting = lightColors * endFogPhase(lightPos) * NdotL;
// vec3 AmbientLightColor = vec3(0.5,0.75,1.0) * 0.9 + 0.1;
// AmbientLightColor *= clamp(1.5 + dot(worldSpaceNormal, normalize(feetPlayerPos))*0.5,0,2);
vec3 AmbientLightColor = vec3(0.3,0.6,1.0) * 0.5;
AmbientLightColor = AmbientLightColor + 0.7 * AmbientLightColor * dot(worldSpaceNormal, normalize(feetPlayerPos));
#endif
#ifdef IS_LPV_ENABLED
vec3 normalOffset = vec3(0.0);
if (any(greaterThan(abs(worldSpaceNormal), vec3(1.0e-6))))
normalOffset = 0.5*worldSpaceNormal;
#if LPV_NORMAL_STRENGTH > 0
if (any(greaterThan(abs(normal), vec3(1.0e-6)))) {
vec3 texNormalOffset = -normalOffset + viewToWorld(normal);
normalOffset = mix(normalOffset, texNormalOffset, (LPV_NORMAL_STRENGTH*0.01));
}
#endif
vec3 lpvPos = GetLpvPosition(feetPlayerPos) + normalOffset;
#else
const vec3 lpvPos = vec3(0.0);
#endif
Indirect_lighting = DoAmbientLightColor(feetPlayerPos, lpvPos, AmbientLightColor, MinimumLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy, exposure);
vec3 FinalColor = (Indirect_lighting + Direct_lighting) * Albedo;
////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// SPECULAR LIGHTING /////////////////////////////
////////////////////////////////////////////////////////////////////////////////
#ifdef DAMAGE_BLOCK_EFFECT
#undef WATER_REFLECTIONS
#endif
#ifndef OVERWORLD_SHADER
#undef WATER_SUN_SPECULAR
#endif
#ifdef WATER_REFLECTIONS
// vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg;
// if nothing is chosen, no smoothness and no reflectance
vec2 specularValues = vec2(1.0, 0.0);
// hardcode specular values for select blocks like glass, water, and slime
if(isReflective) specularValues = vec2(1.0, 0.02);
// detect if the specular texture is used, if it is, overwrite hardcoded values
if(SpecularTex.r > 0.0 && SpecularTex.g <= 1.0) specularValues = SpecularTex.rg;
float roughness = pow(1.0-specularValues.r,2.0);
float f0 = isReflective ? max(specularValues.g, 0.02) : specularValues.g;
#ifdef HAND
f0 = max(specularValues.g, 0.02);
#endif
// f0 = SpecularTex.g;
// roughness = pow(1.0-specularValues.r,2.0);
// f0 = 0.9;
// roughness = 0.0;
vec3 Metals = f0 > 229.5/255.0 ? normalize(Albedo+1e-7) * (dot(Albedo,vec3(0.21, 0.72, 0.07)) * 0.7 + 0.3) : vec3(1.0);
// make sure zero alpha is not forced to be full alpha by fresnel on items with funny normal padding
if(UnchangedAlpha <= 0.0 && !isReflective) f0 = 0.0;
if (f0 > 0.0){
if(isReflective) f0 = max(f0, 0.02);
vec3 Reflections_Final = vec3(0.0);
vec4 Reflections = vec4(0.0);
vec3 BackgroundReflection = FinalColor;
vec3 SunReflection = vec3(0.0);
float indoors = pow(1.0-pow(1.0-min(max(lightmap.y-0.6,0.0)*3.0,1.0),0.5),2.0);
vec3 reflectedVector = reflect(normalize(viewPos), normal);
float normalDotEye = dot(normal, normalize(viewPos));
float fresnel = pow(clamp(1.0 + normalDotEye, 0.0, 1.0),5.0);
/*
int seed = (frameCounter%40000) + frameCounter*2;
float noise = fract(R2_samples(seed).y + (1-blueNoise()));
mat3 Basis = CoordBase(viewToWorld(normal));
vec3 ViewDir = -normalize(feetPlayerPos)*Basis;
vec3 SamplePoints = SampleVNDFGGX(ViewDir, vec2(roughness), noise);
vec3 Ln = reflect(-ViewDir, SamplePoints);
vec3 L = Basis * Ln;
fresnel = pow(clamp(1.0 + dot(-Ln, SamplePoints),0.0,1.0), 5.0);
*/
#ifdef SNELLS_WINDOW
// snells window looking thing
if(isEyeInWater == 1) fresnel = pow(clamp(1.5 + normalDotEye,0.0,1.0), 25.0);
#endif
fresnel = mix(f0, 1.0, fresnel);
// Sun, Sky, and screen-space reflections
#ifdef OVERWORLD_SHADER
#ifdef WATER_SUN_SPECULAR
SunReflection = Direct_lighting * GGX(normal, -normalize(viewPos), WsunVec*mat3(gbufferModelViewInverse), max(roughness,0.035), f0) * Metals;
#endif
#ifdef WATER_BACKGROUND_SPECULAR
if(isEyeInWater == 0 && !isReflectiveEntity) BackgroundReflection = skyCloudsFromTex(mat3(gbufferModelViewInverse) * reflectedVector, colortex4).rgb / 30.0 * Metals;
#endif
if(isEyeInWater == 1 && isWater) BackgroundReflection.rgb = exp(-8.0 * vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B)) * clamp(WsunVec.y*lightCol.a,0,1);
#else
#ifdef WATER_BACKGROUND_SPECULAR
if(isEyeInWater == 0) BackgroundReflection = skyCloudsFromTexLOD2(mat3(gbufferModelViewInverse) * reflectedVector, colortex4, 0).rgb / 30.0 * Metals;
#endif
#endif
#ifdef SCREENSPACE_REFLECTIONS
float reflectLength = 0.0;
vec3 rtPos = rayTrace(reflectedVector, viewPos.xyz, interleaved_gradientNoise_temporal(), fresnel, isEyeInWater == 1,reflectLength);
if (rtPos.z < 1.0){
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
Reflections.a = 1.0;
Reflections.rgb = texture2D(colortex5, previousPosition.xy).rgb * Metals;
}
}
#endif
float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1);
Reflections_Final = mix(mix(FinalColor, BackgroundReflection, indoors), Reflections.rgb, Reflections.a) * fresnel * visibilityFactor;
Reflections_Final += SunReflection;
//correct alpha channel with fresnel
float alpha0 = gl_FragData[0].a;
gl_FragData[0].a = -gl_FragData[0].a * fresnel + gl_FragData[0].a + fresnel;
// prevent reflections from being darkened by buffer blending
gl_FragData[0].rgb = clamp(FinalColor / gl_FragData[0].a*alpha0*(1.0-fresnel) * 0.1 + Reflections_Final / gl_FragData[0].a * 0.1,0.0,65100.0);
if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.0);
} else {
gl_FragData[0].rgb = FinalColor*0.1;
}
#else
gl_FragData[0].rgb = FinalColor*0.1;
#endif
#if EMISSIVE_TYPE == 2 || EMISSIVE_TYPE == 3
Emission(gl_FragData[0].rgb, Albedo, SpecularTex.b, exposure);
#endif
#if defined DISTANT_HORIZONS && defined DH_OVERDRAW_PREVENTION && !defined HAND
bool WATER = texture2D(colortex7, gl_FragCoord.xy*texelSize).a > 0.0 && length(feetPlayerPos) > far-16*4 && texture2D(depthtex1, gl_FragCoord.xy*texelSize).x >= 1.0;
if(WATER) gl_FragData[0].a = 0.0;
#endif
#ifndef HAND
gl_FragData[1] = vec4(Albedo, MATERIALS);
#endif
#if DEBUG_VIEW == debug_DH_WATER_BLENDING
if(gl_FragCoord.x*texelSize.x < 0.47) gl_FragData[0] = vec4(0.0);
#endif
#if DEBUG_VIEW == debug_NORMALS
gl_FragData[0].rgb = normalize(normal.xyz) * 0.1;
#endif
#if DEBUG_VIEW == debug_INDIRECT
gl_FragData[0].rgb = Indirect_lighting* 0.1;
#endif
#if DEBUG_VIEW == debug_DIRECT
gl_FragData[0].rgb = Direct_lighting * 0.1;
#endif
gl_FragData[3].a = clamp(lightmap.y,0.0,1.0);
}
}