mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-03 16:13:30 +08:00
603 lines
22 KiB
GLSL
603 lines
22 KiB
GLSL
uniform float noPuddleAreas;
|
|
|
|
float densityAtPosFog(in vec3 pos){
|
|
pos /= 18.;
|
|
pos.xz *= 0.5;
|
|
vec3 p = floor(pos);
|
|
vec3 f = fract(pos);
|
|
f = (f*f) * (3.-2.*f);
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
vec2 coord = uv / 512.0;
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
return mix(xy.r,xy.g, f.y);
|
|
}
|
|
|
|
|
|
float cloudVol(in vec3 pos, float maxDistance ){
|
|
|
|
float fogYstart = FOG_START_HEIGHT+3;
|
|
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
|
|
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
|
|
|
float uniformFog = 0.0;
|
|
|
|
float low_gradientFog = exp2(-0.3 * max(pos.y - fogYstart,0.0));
|
|
float medium_gradientFog = exp2(-0.15 * max(pos.y - fogYstart,0.0));
|
|
float high_gradientFog = exp2(-0.06 * max(pos.y - fogYstart,0.0));
|
|
|
|
float fog_shape = 0.0;
|
|
float fog_erosion = 0.0;
|
|
if(sandStorm < 1.0 && snowStorm < 1.0){
|
|
fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0);
|
|
fog_erosion = 1.0 - densityAtPosFog(samplePos2 * 200.0 - vec3(min(max(fog_shape - 0.6 ,0.0) * 2.0 ,1.0)*200.0));
|
|
}
|
|
|
|
float cloudyFog = max(min(max(fog_shape - 0.6 ,0.0) * 2.0 ,1.0) - fog_erosion * 0.4 , 0.0) * exp(-0.05 * max(pos.y - (fogYstart+20),0.0));
|
|
float rainyFog = (low_gradientFog * 0.5 + exp2(-0.06 * max(pos.y - fogYstart,0.0))) * rainStrength * noPuddleAreas;
|
|
|
|
if(sandStorm > 0.0 || snowStorm > 0.0){
|
|
float IntenseFogs = pow(1.0 - densityAtPosFog( (samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*15.0) * 100.0),2.0) * mix(1.0, high_gradientFog, snowStorm);
|
|
cloudyFog = mix(cloudyFog, IntenseFogs, sandStorm+snowStorm);
|
|
|
|
medium_gradientFog = 1.0;
|
|
}
|
|
|
|
FogDensities(medium_gradientFog, cloudyFog, rainyFog, maxDistance, dailyWeatherParams0.a, dailyWeatherParams1.a);
|
|
|
|
return uniformFog + medium_gradientFog + cloudyFog + rainyFog;
|
|
}
|
|
|
|
float phaseRayleigh(float cosTheta) {
|
|
const vec2 mul_add = vec2(0.1, 0.28) / acos(-1.0);
|
|
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
|
|
}
|
|
float fogPhase(float lightPoint){
|
|
float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
|
|
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
|
|
|
|
float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
|
|
exponential += sqrt(exp2(sqrt(linear) * -12.5));
|
|
|
|
return exponential;
|
|
}
|
|
|
|
uniform ivec2 eyeBrightness;
|
|
vec4 GetVolumetricFog(
|
|
vec3 viewPosition,
|
|
vec2 dither,
|
|
vec3 LightColor,
|
|
vec3 AmbientColor,
|
|
vec3 AveragedAmbientColor,
|
|
inout float atmosphereAlpha
|
|
){
|
|
#ifndef TOGGLE_VL_FOG
|
|
return vec4(0.0,0.0,0.0,1.0);
|
|
#endif
|
|
|
|
/// ------------- RAYMARCHING STUFF ------------- \\\
|
|
|
|
int SAMPLECOUNT = VL_SAMPLES;
|
|
|
|
//project pixel position into projected shadowmap space
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
//project view origin into projected shadowmap space
|
|
vec3 start = toShadowSpaceProjected(vec3(0.0));
|
|
|
|
//rayvector into projected shadow map space
|
|
//we can use a projected vector because its orthographic projection
|
|
//however we still have to send it to curved shadow map space every step
|
|
vec3 dV = fragposition - start;
|
|
vec3 dVWorld = wpos - gbufferModelViewInverse[3].xyz;
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float maxLength = min(length(dVWorld), max(far, dhRenderDistance))/length(dVWorld);
|
|
#else
|
|
float maxLength = min(length(dVWorld), far)/length(dVWorld);
|
|
#endif
|
|
|
|
dV *= maxLength;
|
|
dVWorld *= maxLength;
|
|
|
|
float dL_alternate = length(dVWorld);
|
|
float dL = dL_alternate/8.0;
|
|
|
|
vec3 progress = start.xyz;
|
|
vec3 progressW = vec3(0.0);
|
|
float expFactor = 11.0;
|
|
|
|
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
|
|
|
|
vec3 color = vec3(0.0);
|
|
float totalAbsorbance = 1.0;
|
|
float fogAbsorbance = 1.0;
|
|
float atmosphereAbsorbance = 1.0;
|
|
|
|
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec;
|
|
float SdotV = dot(sunVec, normalize(viewPosition))*lightCol.a;
|
|
|
|
///// ----- fog lighting
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
float sunPhase = fogPhase(SdotV) * 5.0;
|
|
float skyPhase = pow(clamp(normalize(wpos).y*0.5+0.5,0.0,1.0),4.0)*5.0;
|
|
float rayL = phaseRayleigh(SdotV);
|
|
|
|
vec3 rC = vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5) ;
|
|
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
vec3 skyLightPhased = AmbientColor;
|
|
vec3 LightSourcePhased = LightColor;
|
|
|
|
skyLightPhased *= 1.0 + skyPhase;
|
|
LightSourcePhased *= sunPhase;
|
|
|
|
#ifdef ambientLight_only
|
|
LightSourcePhased = vec3(0.0);
|
|
#endif
|
|
|
|
#ifdef PER_BIOME_ENVIRONMENT
|
|
vec3 biomeDirect = LightSourcePhased;
|
|
vec3 biomeIndirect = skyLightPhased;
|
|
float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect);
|
|
#endif
|
|
|
|
#ifdef DISTANT_HORIZONS
|
|
float atmosphereMult = 1.0;
|
|
#else
|
|
float atmosphereMult = 1.5;
|
|
#endif
|
|
|
|
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
vec3 SkyLightColor = AmbientColor;
|
|
vec3 LightSourceColor = LightColor;
|
|
|
|
#ifdef ambientLight_only
|
|
LightSourceColor = vec3(0.0);
|
|
#endif
|
|
|
|
vec3 dV_Sun = WsunVec;
|
|
|
|
float mieDay = phaseg(SdotV, 0.85) + phaseg(SdotV, 0.75);
|
|
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5);
|
|
|
|
vec3 directScattering = LightSourceColor * mieDay * 3.14;
|
|
vec3 directMultiScattering = LightSourceColor * mieDayMulti * 3.14 * 2.0;
|
|
#endif
|
|
|
|
#if defined LPV_VL_FOG_ILLUMINATION && defined EXCLUDE_WRITE_TO_LUT
|
|
float TorchBrightness_autoAdjust = mix(1.0, 30.0, clamp(exp(-10.0*exposure),0.0,1.0)) / 5.0;
|
|
#endif
|
|
|
|
float inACave = 1.0 - caveDetection;
|
|
float lightLevelZero = pow(clamp(eyeBrightnessSmooth.y/240.0 ,0.0,1.0),3.0);
|
|
|
|
// SkyLightColor *= lightLevelZero*0.9 + 0.1;
|
|
|
|
for (int i = 0; i < SAMPLECOUNT; i++) {
|
|
float d = (pow(expFactor, float(i+dither.x)/float(SAMPLECOUNT))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither.x)/float(SAMPLECOUNT)) * log(expFactor) / float(SAMPLECOUNT)/(expFactor-1.0);
|
|
|
|
progress = start.xyz + d*dV;
|
|
progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
|
|
|
|
//------------------------------------
|
|
//------ SAMPLE SHADOWS FOR FOG EFFECTS
|
|
//------------------------------------
|
|
#ifdef DISTORT_SHADOWMAP
|
|
float distortFactor = calcDistort(progress.xy);
|
|
#else
|
|
float distortFactor = 1.0;
|
|
#endif
|
|
vec3 shadowPos = vec3(progress.xy*distortFactor, progress.z);
|
|
|
|
vec3 sh = vec3(1.0);
|
|
if (abs(shadowPos.x) < 1.0-0.5/2048. && abs(shadowPos.y) < 1.0-0.5/2048){
|
|
shadowPos = shadowPos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
|
|
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
sh = vec3(shadow2D(shadowtex0, shadowPos).x);
|
|
|
|
if(shadow2D(shadowtex1, shadowPos).x > shadowPos.z && sh.x < 1.0){
|
|
vec4 translucentShadow = texture2D(shadowcolor0, shadowPos.xy);
|
|
if(translucentShadow.a < 0.9) sh = normalize(translucentShadow.rgb+0.0001);
|
|
}
|
|
#else
|
|
sh = vec3(shadow2D(shadow, shadowPos).x);
|
|
#endif
|
|
}
|
|
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
vec3 sh_forClouds = sh;
|
|
#endif
|
|
|
|
#ifdef VL_CLOUDS_SHADOWS
|
|
sh *= GetCloudShadow_VLFOG(progressW, WsunVec * lightCol.a);
|
|
#endif
|
|
|
|
#ifdef PER_BIOME_ENVIRONMENT
|
|
float maxDistance = inBiome * min(max(1.0 - length(d*dVWorld.xz)/(32*8),0.0)*2.0,1.0);
|
|
float densityVol = cloudVol(progressW, maxDistance) * inACave;
|
|
#else
|
|
float densityVol = cloudVol(progressW, 0.0) * inACave;
|
|
#endif
|
|
|
|
//------------------------------------
|
|
//------ MAIN FOG EFFECT
|
|
//------------------------------------
|
|
float fogDensity = densityVol;
|
|
float fogVolumeCoeff = exp(-fogDensity*dd*dL); // this is like beer-lambert law or something
|
|
|
|
#ifdef PER_BIOME_ENVIRONMENT
|
|
vec3 indirectLight = mix(skyLightPhased, biomeIndirect, maxDistance);
|
|
vec3 DirectLight = mix(LightSourcePhased, biomeDirect, maxDistance) * sh;
|
|
#else
|
|
vec3 indirectLight = skyLightPhased;
|
|
vec3 DirectLight = LightSourcePhased * sh;
|
|
#endif
|
|
|
|
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz);
|
|
vec3 lighting = DirectLight + indirectLight * (lightLevelZero*0.99 + 0.01) + Lightning;
|
|
|
|
color += (lighting - lighting * fogVolumeCoeff) * fogAbsorbance;
|
|
fogAbsorbance *= fogVolumeCoeff;
|
|
|
|
// kill fog absorbance when in caves.
|
|
totalAbsorbance *= mix(1.0, fogVolumeCoeff, lightLevelZero);
|
|
//------------------------------------
|
|
//------ ATMOSPHERE HAZE EFFECT
|
|
//------------------------------------
|
|
#if defined CloudLayer0 && defined VOLUMETRIC_CLOUDS
|
|
float cloudPlaneCutoff = clamp((CloudLayer0_height + max(eyeAltitude-(CloudLayer0_height-100),0)) - progressW.y,0.0,1.0);
|
|
#else
|
|
float cloudPlaneCutoff = 1.0;
|
|
#endif
|
|
|
|
// just air
|
|
vec2 airCoef = exp2(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * (24.0 * atmosphereMult) * Haze_amount * cloudPlaneCutoff;
|
|
|
|
// Pbr for air, yolo mix between mie and rayleigh for water droplets
|
|
vec3 rL = rC*airCoef.x;
|
|
vec3 m = mC*(airCoef.y+densityVol*300.0);
|
|
|
|
// calculate the atmosphere haze seperately and purely additive to color, do not contribute to absorbtion.
|
|
vec3 atmosphereVolumeCoeff = exp(-(rL+m)*dd*dL_alternate);
|
|
|
|
vec3 Atmosphere = (LightSourcePhased * sh * (rayL*rL + sunPhase*m) + AveragedAmbientColor * (rL+m) * (lightLevelZero*0.99 + 0.01)) * inACave;
|
|
color += (Atmosphere - Atmosphere * atmosphereVolumeCoeff) / (rL+m+1e-6) * atmosphereAbsorbance * totalAbsorbance;
|
|
atmosphereAbsorbance *= dot(atmosphereVolumeCoeff, vec3(0.33333));
|
|
|
|
//------------------------------------
|
|
//------ LPV FOG EFFECT
|
|
//------------------------------------
|
|
#if defined LPV_VL_FOG_ILLUMINATION && defined EXCLUDE_WRITE_TO_LUT
|
|
color += LPV_FOG_ILLUMINATION(progressW-cameraPosition, dd, dL) * TorchBrightness_autoAdjust * totalAbsorbance;
|
|
#endif
|
|
//------------------------------------
|
|
//------ STUPID RENDER CLOUDS AS FOG EFFECT
|
|
//------------------------------------
|
|
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
float otherlayer = max(progressW.y - (CloudLayer0_height+99.5), 0.0) > 0.0 ? 0.0 : 1.0;
|
|
|
|
float DUAL_MIN_HEIGHT = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
|
|
float DUAL_MAX_HEIGHT = DUAL_MIN_HEIGHT + 100.0;
|
|
|
|
float DUAL_DENSITY = otherlayer > 0.0 ? CloudLayer0_density : CloudLayer1_density;
|
|
|
|
if(clamp(progressW.y - DUAL_MAX_HEIGHT,0.0,1.0) < 1.0 && clamp(progressW.y - DUAL_MIN_HEIGHT,0.0,1.0) > 0.0){
|
|
|
|
#if defined CloudLayer1 && defined CloudLayer0
|
|
float upperLayerOcclusion = otherlayer > 0.0 ? GetCumulusDensity(1, progressW + vec3(0.0,1.0,0.0) * max((LAYER1_minHEIGHT+30) - progressW.y,0.0), 0, LAYER1_minHEIGHT, LAYER1_maxHEIGHT) : 0.0;
|
|
float skylightOcclusion = mix(1.0, (1.0 - LAYER1_DENSITY)*0.8 + 0.2, (1.0 - exp2(-5.0 * (upperLayerOcclusion*upperLayerOcclusion))));
|
|
#else
|
|
float skylightOcclusion = 1.0;
|
|
#endif
|
|
|
|
float DUAL_MIN_HEIGHT_2 = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
|
|
float DUAL_MAX_HEIGHT_2 = DUAL_MIN_HEIGHT + 100.0;
|
|
|
|
float cumulus = GetCumulusDensity(-1, progressW, 1, CloudLayer0_height, CloudLayer1_height);
|
|
float fadedDensity = DUAL_DENSITY * pow(clamp((progressW.y - DUAL_MIN_HEIGHT_2)/25,0.0,1.0),2.0);
|
|
|
|
float muE = cumulus*fadedDensity;
|
|
float directLight = 0.0;
|
|
|
|
if(muE > 1e-5){
|
|
|
|
for (int j=0; j < 3; j++){
|
|
// vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
|
|
vec3 shadowSamplePos = progressW + dV_Sun * (20.0 + j * (20.0 + dither.y*20.0));
|
|
float shadow = GetCumulusDensity(-1, shadowSamplePos, 0, DUAL_MIN_HEIGHT, DUAL_MAX_HEIGHT) * DUAL_DENSITY;
|
|
|
|
directLight += shadow;
|
|
}
|
|
|
|
/// shadows cast from one layer to another
|
|
/// large cumulus -> small cumulus
|
|
#if defined CloudLayer1 && defined CloudLayer0
|
|
if(otherlayer > 0.0) directLight += LAYER1_DENSITY * 2.0 * GetCumulusDensity(1, progressW + dV_Sun/abs(dV_Sun.y) * max((LAYER1_minHEIGHT+35) - progressW.y,0.0), 0, LAYER1_minHEIGHT, LAYER1_maxHEIGHT);
|
|
#endif
|
|
// altostratus -> cumulus
|
|
#ifdef CloudLayer2
|
|
vec3 HighAlt_shadowPos = progressW + dV_Sun/abs(dV_Sun.y) * max(LAYER2_HEIGHT - progressW.y,0.0);
|
|
float HighAlt_shadow = GetAltostratusDensity(HighAlt_shadowPos) * CloudLayer2_density * (1.0-abs(WsunVec.y));
|
|
directLight += HighAlt_shadow;
|
|
#endif
|
|
|
|
float skyScatter = clamp(((DUAL_MAX_HEIGHT - progressW.y) / 100.0),0.0,1.0); // linear gradient from bottom to top of cloud layer
|
|
float distantfade = 1- exp( -10*pow(clamp(1.0 - length(progressW - cameraPosition)/(32*65),0.0,1.0),2));
|
|
vec3 cloudlighting = DoCloudLighting(DUAL_DENSITY * cumulus, SkyLightColor*skylightOcclusion, skyScatter, directLight, directScattering*sh_forClouds, directMultiScattering*sh_forClouds, 1);
|
|
|
|
color += max(cloudlighting - cloudlighting*exp(-muE*dd*dL_alternate),0.0) * totalAbsorbance * lightLevelZero;
|
|
totalAbsorbance *= max(exp(-muE*dd*dL_alternate),1.0-lightLevelZero);
|
|
}
|
|
}
|
|
#else
|
|
if (totalAbsorbance < 1e-5) break;
|
|
#endif
|
|
}
|
|
atmosphereAlpha = atmosphereAbsorbance;
|
|
return vec4(color, totalAbsorbance);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// vec4 GetVolumetricFog(
|
|
// vec3 viewPosition,
|
|
// vec2 dither,
|
|
// vec3 LightColor,
|
|
// vec3 AmbientColor
|
|
// ){
|
|
|
|
// #ifndef TOGGLE_VL_FOG
|
|
// return vec4(0.0,0.0,0.0,1.0);
|
|
// #endif
|
|
// int SAMPLECOUNT = VL_SAMPLES;
|
|
// /// ------------- RAYMARCHING STUFF ------------- \\\
|
|
|
|
// //project pixel position into projected shadowmap space
|
|
|
|
// vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
|
|
// vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
// fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
// //project view origin into projected shadowmap space
|
|
// vec3 start = toShadowSpaceProjected(vec3(0.0));
|
|
|
|
// //rayvector into projected shadow map space
|
|
// //we can use a projected vector because its orthographic projection
|
|
// //however we still have to send it to curved shadow map space every step
|
|
// vec3 dV = fragposition - start;
|
|
// vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
// #ifdef DISTANT_HORIZONS
|
|
// float maxLength = min(length(dVWorld), max(dhFarPlane-1000,0.0))/length(dVWorld);
|
|
// SAMPLECOUNT += SAMPLECOUNT;
|
|
// #else
|
|
// float maxLength = min(length(dVWorld), far)/length(dVWorld);
|
|
// #endif
|
|
|
|
// dV *= maxLength;
|
|
// dVWorld *= maxLength;
|
|
|
|
// float dL = length(dVWorld);
|
|
// float mult = length(dVWorld)/25;
|
|
|
|
// vec3 progress = start.xyz;
|
|
// vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
|
|
|
|
// vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
|
// float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
|
|
|
|
|
|
// /// ------------- COLOR/LIGHTING STUFF ------------- \\\
|
|
|
|
// vec3 color = vec3(0.0);
|
|
// vec3 absorbance = vec3(1.0);
|
|
|
|
// ///// ----- fog lighting
|
|
// //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
// float mie = fogPhase(SdotV) * 5.0;
|
|
// float rayL = phaseRayleigh(SdotV);
|
|
|
|
// vec3 rC = vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5);
|
|
// vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
// vec3 skyLightPhased = AmbientColor;
|
|
// vec3 LightSourcePhased = LightColor;
|
|
|
|
// #ifdef ambientLight_only
|
|
// LightSourcePhased = vec3(0.0);
|
|
// #endif
|
|
// #ifdef PER_BIOME_ENVIRONMENT
|
|
// vec3 biomeDirect = LightSourcePhased;
|
|
// vec3 biomeIndirect = skyLightPhased;
|
|
// float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect);
|
|
// #endif
|
|
|
|
// skyLightPhased = max(skyLightPhased + skyLightPhased*(normalize(wpos).y*0.9+0.1),0.0);
|
|
// LightSourcePhased *= mie;
|
|
|
|
// // float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
|
|
|
|
// float lightleakfix = 1.0 - caveDetection;
|
|
|
|
// #ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
// vec3 SkyLightColor = AmbientColor;
|
|
// vec3 LightSourceColor = LightColor;
|
|
|
|
// #ifdef ambientLight_only
|
|
// LightSourceColor = vec3(0.0);
|
|
// #endif
|
|
|
|
// float shadowStep = 200.0;
|
|
|
|
// vec3 dV_Sun = WsunVec*shadowStep;
|
|
|
|
// float mieDay = phaseg(SdotV, 0.75);
|
|
// float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ;
|
|
|
|
// vec3 directScattering = LightSourceColor * mieDay * 3.14;
|
|
// vec3 directMultiScattering = LightSourceColor * mieDayMulti * 3.14;
|
|
|
|
// vec3 sunIndirectScattering = LightSourceColor * phaseg(dot(mat3(gbufferModelView)*vec3(0,1,0),normalize(viewPosition)), 0.5) * 3.14;
|
|
// #endif
|
|
|
|
|
|
// #ifdef DISTANT_HORIZONS
|
|
// float atmosphereMult = 1.0;
|
|
// #else
|
|
// float atmosphereMult = 1.5;
|
|
// #endif
|
|
|
|
// float expFactor = 11.0;
|
|
// for (int i=0;i<SAMPLECOUNT;i++) {
|
|
// float d = (pow(expFactor, float(i+dither.x)/float(SAMPLECOUNT))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
// float dd = pow(expFactor, float(i+dither.x)/float(SAMPLECOUNT)) * log(expFactor) / float(SAMPLECOUNT)/(expFactor-1.0);
|
|
// progress = start.xyz + d*dV;
|
|
// progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
// // float curvature = 1-exp(-25*pow(clamp(1.0 - length(progressW - cameraPosition)/(32*80),0.0,1.0),2));
|
|
|
|
// //project into biased shadowmap space
|
|
// #ifdef DISTORT_SHADOWMAP
|
|
// float distortFactor = calcDistort(progress.xy);
|
|
// #else
|
|
// float distortFactor = 1.0;
|
|
// #endif
|
|
// vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
|
|
|
// vec3 sh = vec3(1.0);
|
|
|
|
// if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
// pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
|
|
// #ifdef TRANSLUCENT_COLORED_SHADOWS
|
|
// sh = vec3(shadow2D(shadowtex0, pos).x);
|
|
|
|
// if(shadow2D(shadowtex1, pos).x > pos.z && sh.x < 1.0){
|
|
// vec4 translucentShadow = texture2D(shadowcolor0, pos.xy);
|
|
// if(translucentShadow.a < 0.9) sh = normalize(translucentShadow.rgb+0.0001);
|
|
// }
|
|
// #else
|
|
// sh = vec3(shadow2D(shadow, pos).x);
|
|
// #endif
|
|
|
|
// }
|
|
// vec3 sh2 = sh;
|
|
|
|
// #ifdef VL_CLOUDS_SHADOWS
|
|
// // if(clamp(progressW.y - CloudLayer1_height,0.0,1.0) < 1.0 && clamp(progressW.y-50,0.0,1.0) > 0.0)
|
|
// sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
|
// #endif
|
|
|
|
|
|
// #ifdef PER_BIOME_ENVIRONMENT
|
|
// float maxDistance = inBiome * min(max(1.0 - length(d*dVWorld.xz)/(32*8),0.0)*2.0,1.0);
|
|
// float densityVol = cloudVol(progressW, maxDistance) * lightleakfix;
|
|
// #else
|
|
// float densityVol = cloudVol(progressW, 0.0) * lightleakfix;
|
|
// #endif
|
|
|
|
// //Water droplets(fog)
|
|
// float density = densityVol*300.0;
|
|
|
|
// ///// ----- main fog lighting
|
|
|
|
// //Just air
|
|
// vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * (atmosphereMult * 24.0) * Haze_amount * clamp(CloudLayer0_height - progressW.y + max(eyeAltitude-(CloudLayer0_height-50),0),0.0,1.0);
|
|
|
|
// //Pbr for air, yolo mix between mie and rayleigh for water droplets
|
|
// vec3 rL = rC*airCoef.x;
|
|
// vec3 m = (airCoef.y+density) * mC;
|
|
|
|
// #ifdef PER_BIOME_ENVIRONMENT
|
|
// vec3 Atmosphere = mix(skyLightPhased, biomeDirect, maxDistance) * (rL + m); // not pbr so just make the atmosphere also dense fog heh
|
|
// vec3 DirectLight = mix(LightSourcePhased, biomeIndirect, maxDistance) * sh * (rL*rayL + m);
|
|
// #else
|
|
// vec3 Atmosphere = skyLightPhased * (rL + m); // not pbr so just make the atmosphere also dense fog heh
|
|
// vec3 DirectLight = LightSourcePhased * sh * (rL*rayL + m);
|
|
// #endif
|
|
// vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * (rL + m);
|
|
|
|
// vec3 foglighting = (Atmosphere + DirectLight + Lightning) * lightleakfix;
|
|
|
|
|
|
|
|
// color += (foglighting - foglighting * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
|
|
// absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0);
|
|
|
|
// #ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
// //////////////////////////////////////////
|
|
// ///// ----- cloud part
|
|
// //////////////////////////////////////////
|
|
// // curvature = clamp(1.0 - length(progressW - cameraPosition)/(32*128),0.0,1.0);
|
|
|
|
|
|
// float otherlayer = max(progressW.y - (CloudLayer0_height+99.5), 0.0) > 0.0 ? 0.0 : 1.0;
|
|
|
|
// float DUAL_MIN_HEIGHT = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
|
|
// float DUAL_MAX_HEIGHT = DUAL_MIN_HEIGHT + 100.0;
|
|
|
|
// float DUAL_DENSITY = otherlayer > 0.0 ? CloudLayer0_density : CloudLayer1_density;
|
|
|
|
// if(clamp(progressW.y - DUAL_MAX_HEIGHT,0.0,1.0) < 1.0 && clamp(progressW.y - DUAL_MIN_HEIGHT,0.0,1.0) > 0.0){
|
|
|
|
// float DUAL_MIN_HEIGHT_2 = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
|
|
// float DUAL_MAX_HEIGHT_2 = DUAL_MIN_HEIGHT + 100.0;
|
|
|
|
// float cumulus = GetCumulusDensity(-1, progressW, 1, CloudLayer0_height, CloudLayer1_height);
|
|
// float fadedDensity = DUAL_DENSITY * clamp(exp( (progressW.y - (DUAL_MAX_HEIGHT - 75)) / 9.0 ),0.0,1.0);
|
|
|
|
// float muE = cumulus*fadedDensity;
|
|
// float directLight = 0.0;
|
|
// for (int j=0; j < 3; j++){
|
|
// vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
|
|
// float shadow = GetCumulusDensity(-1, shadowSamplePos, 0, DUAL_MIN_HEIGHT, DUAL_MAX_HEIGHT) * DUAL_DENSITY;
|
|
|
|
// directLight += shadow;
|
|
// }
|
|
|
|
// /// shadows cast from one layer to another
|
|
// /// large cumulus -> small cumulus
|
|
// #if defined CloudLayer1 && defined CloudLayer0
|
|
// if(otherlayer > 0.0) directLight += LAYER1_DENSITY * 2.0 * GetCumulusDensity(1, progressW + dV_Sun/abs(dV_Sun.y) * max((LAYER1_minHEIGHT+70*dither.y) - progressW.y,0.0), 0, LAYER1_minHEIGHT, LAYER1_maxHEIGHT);
|
|
// #endif
|
|
// // // altostratus -> cumulus
|
|
// // #ifdef CloudLayer2
|
|
// // vec3 HighAlt_shadowPos = rayProgress + dV_Sun/abs(dV_Sun.y) * max(LAYER2_HEIGHT - rayProgress.y,0.0);
|
|
// // float HighAlt_shadow = GetAltostratusDensity(HighAlt_shadowPos) * CloudLayer2_density;
|
|
// // directLight += HighAlt_shadow;
|
|
// // #endif
|
|
|
|
|
|
// float skyScatter = clamp(((DUAL_MAX_HEIGHT - 20 - progressW.y) / 275.0) * (0.5+DUAL_DENSITY),0.0,1.0);
|
|
// float distantfade = 1- exp( -10*pow(clamp(1.0 - length(progressW - cameraPosition)/(32*65),0.0,1.0),2));
|
|
// vec3 cloudlighting = DoCloudLighting(cloudDensity * cumulus, SkyLightColor, skyScatter, directLight, directScattering*sh2, directMultiScattering*sh2, 1);
|
|
|
|
// color += max(cloudlighting - cloudlighting*exp(-muE*dd*dL),0.0) * absorbance;
|
|
// absorbance *= max(exp(-muE*dd*dL),0.0);
|
|
// }
|
|
|
|
// #endif
|
|
|
|
// if (min(dot(absorbance,vec3(0.335)),1.0) < 1e-5) break;
|
|
// }
|
|
// return vec4(color, min(dot(absorbance,vec3(0.335)),1.0));
|
|
// } |