Bliss-Shader/shaders/composite5.fsh

528 lines
19 KiB
GLSL

#version 120
//Temporal Anti-Aliasing + Dynamic exposure calculations (vertex shader)
#extension GL_EXT_gpu_shader4 : enable
#include "lib/settings.glsl"
#include "lib/res_params.glsl"
//TAA OPTIONS
const int noiseTextureResolution = 32;
/*
const int colortex0Format = RGBA16F; // low res clouds (deferred->composite2) + low res VL (composite5->composite15)
const int colortex1Format = RGBA16; //terrain gbuffer (gbuffer->composite2)
const int colortex2Format = RGBA16F; //forward + transparencies (gbuffer->composite4)
const int colortex3Format = R11F_G11F_B10F; //frame buffer + bloom (deferred6->final)
const int colortex4Format = RGBA16F; //light values and skyboxes (everything)
const int colortex11Format = RGBA16; //Final output, transparencies id (gbuffer->composite4)
const int colortex13Format = RGBA8; //Final output, transparencies id (gbuffer->composite4)
const int colortex6Format = R11F_G11F_B10F; //additionnal buffer for bloom (composite3->final)
const int colortex7Format = RGBA8; //Final output, transparencies id (gbuffer->composite4)
const int colortex8Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
const int colortex9Format = RGBA8; //Final output, transparencies id (gbuffer->composite4)
const int colortex10Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
// const int colortex15Format = RGBA16F; // flat normals and vanilla
*/
//no need to clear the buffers, saves a few fps
/*
const bool colortex0Clear = false;
const bool colortex1Clear = false;
const bool colortex2Clear = true;
const bool colortex3Clear = false;
const bool colortex4Clear = false;
const bool colortex5Clear = false;
const bool colortex6Clear = false;
const bool colortex7Clear = false;
*/
#ifdef SCREENSHOT_MODE
/*
const int colortex5Format = RGBA32F; //TAA buffer (everything)
*/
#else
/*
const int colortex5Format = R11F_G11F_B10F; //TAA buffer (everything)
*/
#endif
varying vec2 texcoord;
flat varying float exposureA;
flat varying float tempOffsets;
uniform sampler2D colortex0;
uniform sampler2D colortex1;
uniform sampler2D colortex3;
uniform sampler2D colortex5;
uniform sampler2D colortex6;
// uniform sampler2D colortex10;
uniform sampler2D colortex13;
uniform sampler2D depthtex0;
uniform sampler2D depthtex1;
uniform vec2 texelSize;
uniform float frameTimeCounter;
uniform float viewHeight;
uniform float viewWidth;
uniform int hideGUI;
uniform int frameCounter;
uniform int framemod8;
uniform vec3 previousCameraPosition;
uniform mat4 gbufferPreviousModelView;
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
#include "lib/projections.glsl"
float luma(vec3 color) {
return dot(color,vec3(0.21, 0.72, 0.07));
}
float interleaved_gradientNoise(){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+tempOffsets);
}
float triangularize(float dither)
{
float center = dither*2.0-1.0;
dither = center*inversesqrt(abs(center));
return clamp(dither-fsign(center),0.0,1.0);
}
vec3 fp10Dither(vec3 color,float dither){
const vec3 mantissaBits = vec3(6.,6.,5.);
vec3 exponent = floor(log2(color));
return color + dither*exp2(-mantissaBits)*exp2(exponent);
}
//returns the projected coordinates of the closest point to the camera in the 3x3 neighborhood
vec3 closestToCamera5taps(vec2 texcoord, sampler2D depth)
{
vec2 du = vec2(texelSize.x*2., 0.0);
vec2 dv = vec2(0.0, texelSize.y*2.);
vec3 dtl = vec3(texcoord,0.) + vec3(-texelSize, texture2D(depth, texcoord - dv - du).x);
vec3 dtr = vec3(texcoord,0.) + vec3( texelSize.x, -texelSize.y, texture2D(depth, texcoord - dv + du).x);
vec3 dmc = vec3(texcoord,0.) + vec3( 0.0, 0.0, texture2D(depth, texcoord).x);
vec3 dbl = vec3(texcoord,0.) + vec3(-texelSize.x, texelSize.y, texture2D(depth, texcoord + dv - du).x);
vec3 dbr = vec3(texcoord,0.) + vec3( texelSize.x, texelSize.y, texture2D(depth, texcoord + dv + du).x);
vec3 dmin = dmc;
dmin = dmin.z > dtr.z? dtr : dmin;
dmin = dmin.z > dtl.z? dtl : dmin;
dmin = dmin.z > dbl.z? dbl : dmin;
dmin = dmin.z > dbr.z? dbr : dmin;
#ifdef TAA_UPSCALING
dmin.xy = dmin.xy/RENDER_SCALE;
#endif
return dmin;
}
//Modified texture interpolation from inigo quilez
vec4 smoothfilter(in sampler2D tex, in vec2 uv)
{
vec2 textureResolution = vec2(viewWidth,viewHeight);
uv = uv*textureResolution + 0.5;
vec2 iuv = floor( uv );
vec2 fuv = fract( uv );
uv = iuv + fuv*fuv*fuv*(fuv*(fuv*6.0-15.0)+10.0);
uv = (uv - 0.5)/textureResolution;
return texture2D( tex, uv);
}
//Due to low sample count we "tonemap" the inputs to preserve colors and smoother edges
vec3 weightedSample(sampler2D colorTex, vec2 texcoord){
vec3 wsample = texture2D(colorTex,texcoord).rgb*exposureA;
return wsample/(1.0+luma(wsample));
}
//from : https://gist.github.com/TheRealMJP/c83b8c0f46b63f3a88a5986f4fa982b1
vec4 SampleTextureCatmullRom(sampler2D tex, vec2 uv, vec2 texSize )
{
// We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding
// down the sample location to get the exact center of our "starting" texel. The starting texel will be at
// location [1, 1] in the grid, where [0, 0] is the top left corner.
vec2 samplePos = uv * texSize;
vec2 texPos1 = floor(samplePos - 0.5) + 0.5;
// Compute the fractional offset from our starting texel to our original sample location, which we'll
// feed into the Catmull-Rom spline function to get our filter weights.
vec2 f = samplePos - texPos1;
// Compute the Catmull-Rom weights using the fractional offset that we calculated earlier.
// These equations are pre-expanded based on our knowledge of where the texels will be located,
// which lets us avoid having to evaluate a piece-wise function.
vec2 w0 = f * ( -0.5 + f * (1.0 - 0.5*f));
vec2 w1 = 1.0 + f * f * (-2.5 + 1.5*f);
vec2 w2 = f * ( 0.5 + f * (2.0 - 1.5*f) );
vec2 w3 = f * f * (-0.5 + 0.5 * f);
// Work out weighting factors and sampling offsets that will let us use bilinear filtering to
// simultaneously evaluate the middle 2 samples from the 4x4 grid.
vec2 w12 = w1 + w2;
vec2 offset12 = w2 / (w1 + w2);
// Compute the final UV coordinates we'll use for sampling the texture
vec2 texPos0 = texPos1 - vec2(1.0);
vec2 texPos3 = texPos1 + vec2(2.0);
vec2 texPos12 = texPos1 + offset12;
texPos0 *= texelSize;
texPos3 *= texelSize;
texPos12 *= texelSize;
vec4 result = vec4(0.0);
result += texture2D(tex, vec2(texPos0.x, texPos0.y)) * w0.x * w0.y;
result += texture2D(tex, vec2(texPos12.x, texPos0.y)) * w12.x * w0.y;
result += texture2D(tex, vec2(texPos3.x, texPos0.y)) * w3.x * w0.y;
result += texture2D(tex, vec2(texPos0.x, texPos12.y)) * w0.x * w12.y;
result += texture2D(tex, vec2(texPos12.x, texPos12.y)) * w12.x * w12.y;
result += texture2D(tex, vec2(texPos3.x, texPos12.y)) * w3.x * w12.y;
result += texture2D(tex, vec2(texPos0.x, texPos3.y)) * w0.x * w3.y;
result += texture2D(tex, vec2(texPos12.x, texPos3.y)) * w12.x * w3.y;
result += texture2D(tex, vec2(texPos3.x, texPos3.y)) * w3.x * w3.y;
return result;
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter);
}
//approximation from SMAA presentation from siggraph 2016
vec3 FastCatmulRom(sampler2D colorTex, vec2 texcoord, vec4 rtMetrics, float sharpenAmount)
{
vec2 position = rtMetrics.zw * texcoord;
vec2 centerPosition = floor(position - 0.5) + 0.5;
vec2 f = position - centerPosition;
vec2 f2 = f * f;
vec2 f3 = f * f2;
float c = sharpenAmount;
vec2 w0 = -c * f3 + 2.0 * c * f2 - c * f;
vec2 w1 = (2.0 - c) * f3 - (3.0 - c) * f2 + 1.0;
vec2 w2 = -(2.0 - c) * f3 + (3.0 - 2.0 * c) * f2 + c * f;
vec2 w3 = c * f3 - c * f2;
vec2 w12 = w1 + w2;
vec2 tc12 = rtMetrics.xy * (centerPosition + w2 / w12);
vec3 centerColor = texture2D(colorTex, vec2(tc12.x, tc12.y)).rgb;
vec2 tc0 = rtMetrics.xy * (centerPosition - 1.0);
vec2 tc3 = rtMetrics.xy * (centerPosition + 2.0);
vec4 color = vec4(texture2D(colorTex, vec2(tc12.x, tc0.y )).rgb, 1.0) * (w12.x * w0.y ) +
vec4(texture2D(colorTex, vec2(tc0.x, tc12.y)).rgb, 1.0) * (w0.x * w12.y) +
vec4(centerColor, 1.0) * (w12.x * w12.y) +
vec4(texture2D(colorTex, vec2(tc3.x, tc12.y)).rgb, 1.0) * (w3.x * w12.y) +
vec4(texture2D(colorTex, vec2(tc12.x, tc3.y )).rgb, 1.0) * (w12.x * w3.y );
return color.rgb/color.a;
}
vec3 clip_aabb(vec3 q,vec3 aabb_min, vec3 aabb_max)
{
vec3 p_clip = 0.5 * (aabb_max + aabb_min);
vec3 e_clip = 0.5 * (aabb_max - aabb_min) + 0.00000001;
vec3 v_clip = q - vec3(p_clip);
vec3 v_unit = v_clip.xyz / e_clip;
vec3 a_unit = abs(v_unit);
float ma_unit = max(a_unit.x, max(a_unit.y, a_unit.z));
if (ma_unit > 1.0)
return vec3(p_clip) + v_clip / ma_unit;
else
return q;
}
vec3 toClipSpace3Prev(vec3 viewSpacePosition) {
return projMAD(gbufferPreviousProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
}
vec3 tonemap(vec3 col){
return col/(1+luma(col));
}
vec3 invTonemap(vec3 col){
return col/(1-luma(col));
}
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
vec2(-1.,3.)/8.,
vec2(5.0,1.)/8.,
vec2(-3,-5.)/8.,
vec2(-5.,5.)/8.,
vec2(-7.,-1.)/8.,
vec2(3,7.)/8.,
vec2(7.,-7.)/8.);
// float maxOf(vec2 v) { return max(v.x, v.y); }
// float maxOf(vec3 v) { return max(v.x, max(v.y, v.z)); }
// float maxOf(vec4 v) { return max(v.x, max(v.y, max(v.z, v.w))); }
// const float eps = 1e-6;
// vec3 reproject(vec3 screenPos, sampler2D velocitySampler) {
// vec3 velocity = texelFetch(velocitySampler, ivec2(screenPos.xy), 0).xyz;
// if (maxOf(abs(velocity)) < r) {
// return reproject(screenPos);
// } else {
// vec3 pos = screenToViewSpace(screenPos, false);
// pos = pos - velocity;
// pos = toScreenSpace(pos, false);
// return pos;
// }
// }
vec3 worldToView(vec3 p3) {
vec4 pos = vec4(p3, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec3 viewToWorld(vec3 viewPosition) {
vec4 pos;
pos.xyz = viewPosition;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 projectAndDivide(mat4 projectionMatrix, vec3 position){
vec4 homogeneousPos = projectionMatrix * vec4(position, 1.0);
return homogeneousPos.xyz / homogeneousPos.w;
}
vec3 TAA_hq(bool hand, bool istranslucent, vec3 EntityVelocity, inout vec3 DEBUG){
#ifdef TAA_UPSCALING
vec2 adjTC = clamp(texcoord*RENDER_SCALE, vec2(0.0),RENDER_SCALE-texelSize*2.);
#else
vec2 adjTC = texcoord;
#endif
//use velocity from the nearest texel from camera in a 3x3 box in order to improve edge quality in motion
#ifdef CLOSEST_VELOCITY
vec3 closestToCamera = closestToCamera5taps(adjTC, depthtex0);
#endif
// if( EntityVelocity > vec3(0.0) ) closestToCamera = closestToCamera - EntityVelocity;
#ifndef CLOSEST_VELOCITY
vec3 closestToCamera = vec3(texcoord,texture2D(depthtex1,adjTC).x);
#endif
//reproject previous frame
vec3 fragposition = toScreenSpace(closestToCamera);
fragposition = mat3(gbufferModelViewInverse) * fragposition + gbufferModelViewInverse[3].xyz + (cameraPosition - previousCameraPosition);
vec3 previousPosition = mat3(gbufferPreviousModelView) * fragposition + gbufferPreviousModelView[3].xyz;
previousPosition = toClipSpace3Prev(previousPosition) ;
vec2 velocity = previousPosition.xy - closestToCamera.xy;
previousPosition.xy = texcoord + velocity ;
// previousPosition -= abs(EntityVelocity);
DEBUG = previousPosition;
//reject history if off-screen and early exit
if (previousPosition.x < 0.0 || previousPosition.y < 0.0 || previousPosition.x > 1.0 || previousPosition.y > 1.0)
return smoothfilter(colortex3, adjTC + offsets[framemod8]*texelSize*0.5).xyz;
#ifdef TAA_UPSCALING
vec3 albedoCurrent0 = smoothfilter(colortex3, adjTC + offsets[framemod8]*texelSize*0.5).xyz;
// Interpolating neighboorhood clampling boundaries between pixels
vec3 cMax = texture2D(colortex0, adjTC).rgb;
vec3 cMin = texture2D(colortex6, adjTC).rgb;
#else
vec3 albedoCurrent0 = texture2D(colortex3, adjTC).rgb;
vec3 albedoCurrent1 = texture2D(colortex3, adjTC + vec2(texelSize.x,texelSize.y)).rgb;
vec3 albedoCurrent2 = texture2D(colortex3, adjTC + vec2(texelSize.x,-texelSize.y)).rgb;
vec3 albedoCurrent3 = texture2D(colortex3, adjTC + vec2(-texelSize.x,-texelSize.y)).rgb;
vec3 albedoCurrent4 = texture2D(colortex3, adjTC + vec2(-texelSize.x,texelSize.y)).rgb;
vec3 albedoCurrent5 = texture2D(colortex3, adjTC + vec2(0.0,texelSize.y)).rgb;
vec3 albedoCurrent6 = texture2D(colortex3, adjTC + vec2(0.0,-texelSize.y)).rgb;
vec3 albedoCurrent7 = texture2D(colortex3, adjTC + vec2(-texelSize.x,0.0)).rgb;
vec3 albedoCurrent8 = texture2D(colortex3, adjTC + vec2(texelSize.x,0.0)).rgb;
//Assuming the history color is a blend of the 3x3 neighborhood, we clamp the history to the min and max of each channel in the 3x3 neighborhood
vec3 cMax = max(max(max(albedoCurrent0,albedoCurrent1),albedoCurrent2),max(albedoCurrent3,max(albedoCurrent4,max(albedoCurrent5,max(albedoCurrent6,max(albedoCurrent7,albedoCurrent8))))));
vec3 cMin = min(min(min(albedoCurrent0,albedoCurrent1),albedoCurrent2),min(albedoCurrent3,min(albedoCurrent4,min(albedoCurrent5,min(albedoCurrent6,min(albedoCurrent7,albedoCurrent8))))));
albedoCurrent0 = smoothfilter(colortex3, adjTC + offsets[framemod8]*texelSize*0.5).rgb;
#endif
#ifndef NO_CLIP
vec3 albedoPrev = max(FastCatmulRom(colortex5, previousPosition.xy,vec4(texelSize, 1.0/texelSize), 0.75).xyz, 0.0);
vec3 finalcAcc = clamp(albedoPrev,cMin,cMax);
//Increases blending factor when far from AABB and in motion, reduces ghosting
float isclamped = distance(albedoPrev,finalcAcc)/luma(albedoPrev) * 0.5;
float movementRejection = (0.12+isclamped)*clamp(length(velocity/texelSize),0.0,1.0);
float test = 0.05;
if(hand) movementRejection *= 5;
if(istranslucent) test = 0.1;
//Blend current pixel with clamped history, apply fast tonemap beforehand to reduce flickering
// vec3 supersampled = invTonemap(mix(tonemap(finalcAcc),tonemap(albedoCurrent0),clamp(BLEND_FACTOR + movementRejection, min(luma(motionVector) *255,1.0),1.)));
vec3 supersampled = invTonemap(mix(tonemap(finalcAcc),tonemap(albedoCurrent0),clamp(BLEND_FACTOR + movementRejection, test,1.)));
#endif
#ifdef NO_CLIP
vec3 albedoPrev = texture2D(colortex5, previousPosition.xy).xyz;
vec3 supersampled = mix(albedoPrev,albedoCurrent0,clamp(0.05,0.,1.));
#endif
//De-tonemap
return supersampled;
}
vec3 decode (vec2 encn){
vec3 n = vec3(0.0);
encn = encn * 2.0 - 1.0;
n.xy = abs(encn);
n.z = 1.0 - n.x - n.y;
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
return clamp(normalize(n.xyz),-1.0,1.0);
}
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
return fract( a * constant1 ) * constant2 ;
}
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n)*2.-1.0;
}
vec4 TAA_hq_render(){
#ifdef TAA_UPSCALING
vec2 adjTC = clamp(texcoord*RENDER_SCALE, vec2(0.0),RENDER_SCALE-texelSize*2.);
#else
vec2 adjTC = texcoord;
#endif
//use velocity from the nearest texel from camera in a 3x3 box in order to improve edge quality in motion
#ifdef CLOSEST_VELOCITY
vec3 closestToCamera = closestToCamera5taps(adjTC,depthtex0);
#endif
#ifndef CLOSEST_VELOCITY
vec3 closestToCamera = vec3(texcoord,texture2D(depthtex0,adjTC).x);
#endif
//reproject previous frame
vec3 fragposition = toScreenSpace(closestToCamera);
fragposition = mat3(gbufferModelViewInverse) * fragposition + gbufferModelViewInverse[3].xyz + (cameraPosition - previousCameraPosition);
vec3 previousPosition = mat3(gbufferPreviousModelView) * fragposition + gbufferPreviousModelView[3].xyz;
previousPosition = toClipSpace3Prev(previousPosition);
vec2 velocity = previousPosition.xy - closestToCamera.xy;
previousPosition.xy = texcoord + velocity;
// //reject history if off-screen and early exit
if (previousPosition.x < 0.0 || previousPosition.y < 0.0 || previousPosition.x > 1.0 || previousPosition.y > 1.0)
return vec4(smoothfilter(colortex3, adjTC + R2_samples(frameCounter)*texelSize*0.5).xyz, 1.0);
vec3 albedoCurrent0 = smoothfilter(colortex3, adjTC + R2_samples(frameCounter)*texelSize*0.5).xyz;
float rej = 0.0;
vec4 albedoPrev = texture2D(colortex5, previousPosition.xy);
vec3 supersampled = albedoPrev.rgb * albedoPrev.a + albedoCurrent0;
if (length(velocity) > 1e-6) return vec4(albedoCurrent0,1.0);
return vec4(supersampled/(albedoPrev.a+1.0), albedoPrev.a+1.0);
}
void main() {
/* DRAWBUFFERS:5 */
gl_FragData[0].a = 1.0;
#ifndef SPLIT_RENDER
#ifdef SCREENSHOT_MODE
vec4 color;
if(hideGUI >= 1) {
color = TAA_hq_render();
} else {
color = vec4(clamp(fp10Dither(texture2D(colortex3,texcoord).rgb,triangularize(interleaved_gradientNoise())),0.,65000.), 0.0);
}
gl_FragData[0] = color;
#else
#ifdef TAA
vec4 data = texture2D(colortex1,texcoord* RENDER_SCALE); // terraom
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
bool translucentCol = texture2D(colortex13,texcoord * RENDER_SCALE).a > 0.0; // translucents
vec3 color = vec3(0.0);
// vec3 motionVector = texture2D(colortex10,texcoord).xyz ;
// vec3 motionVector = texelFetch(colortex10, ivec2(gl_FragCoord.xy), 0).xyz * 2 - 1;
// if((motionVector.x+motionVector.y+motionVector.z) / 3 < 0.00001) motionVector = vec3(0.0);
// vec3 viewpos = motionVector;
// // vec3 eyepos = mat3(gbufferModelViewInverse) * viewpos;
// // vec3 worldPos = eyepos + (cameraPosition + gbufferModelViewInverse[3].xyz);
// // vec3 feetPos = worldPos - cameraPosition;
// vec4 clippos = gbufferProjection * vec4(motionVector,1.0);
// vec3 ndcPos = projectAndDivide(gbufferProjectionInverse, viewpos);
// vec3 screenPos = ndcPos * 0.5 + 0.5;
vec3 DEBUG = vec3(0.0);
color += TAA_hq(hand, translucentCol, vec3(0.0),DEBUG);
gl_FragData[0].rgb = clamp(fp10Dither(color ,triangularize(R2_dither())),6.11*1e-5,65000.0);
// gl_FragData[0].rgb = motionVector;
#endif
#ifndef TAA
vec3 color = clamp(fp10Dither(texture2D(colortex3,texcoord).rgb,triangularize(interleaved_gradientNoise())),0.,65000.);
gl_FragData[0].rgb = color;
#endif
#endif
#endif
#ifdef SPLIT_RENDER
if(texcoord.x > 0.5){
vec4 color = TAA_hq_render();
gl_FragData[0] = color;
}else{
vec4 data = texture2D(colortex1,texcoord* RENDER_SCALE); // terraom
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
bool translucentCol = texture2D(colortex13,texcoord * RENDER_SCALE).a > 0.0; // translucents
vec3 color = TAA_hq(hand, translucentCol);
gl_FragData[0].rgb = clamp(fp10Dither(color ,triangularize(R2_dither())),6.11*1e-5,65000.0);
}
#endif
}