#version 120 #extension GL_EXT_gpu_shader4 : enable varying vec4 lmtexcoord; varying vec4 color; varying vec4 normalMat; varying vec3 binormal; varying vec3 tangent; varying vec3 viewVector; varying float dist; #define SCREENSPACE_REFLECTIONS //can be really expensive at high resolutions/render quality, especially on ice #define SSR_STEPS 30 //[10 15 20 25 30 35 40 50 100 200 400] #define SUN_MICROFACET_SPECULAR // If enabled will use realistic rough microfacet model, else will just reflect the sun. No performance impact. #define saturate(x) clamp(x,0.0,1.0) uniform sampler2D texture; uniform sampler2D noisetex; uniform sampler2D gaux2; uniform sampler2D gaux1; uniform sampler2D depthtex1; uniform vec4 lightCol; uniform vec3 sunVec; uniform float frameTimeCounter; uniform float lightSign; uniform float near; uniform float far; uniform float moonIntensity; uniform float sunIntensity; uniform vec3 sunColor; uniform vec3 nsunColor; uniform vec3 upVec; uniform float sunElevation; uniform float fogAmount; uniform vec2 texelSize; uniform float rainStrength; uniform float skyIntensityNight; uniform float skyIntensity; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; uniform int framemod8; uniform int frameCounter; uniform int isEyeInWater; #include "lib/color_transforms.glsl" #include "lib/projections.glsl" #include "lib/sky_gradient.glsl" #include "lib/waterBump.glsl" #include "lib/clouds.glsl" #include "lib/stars.glsl" const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), vec2(-1.,3.)/8., vec2(5.0,1.)/8., vec2(-3,-5.)/8., vec2(-5.,5.)/8., vec2(-7.,-1.)/8., vec2(3,7.)/8., vec2(7.,-7.)/8.); float interleaved_gradientNoise(float temporal){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+temporal); return noise; } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 nvec3(vec4 pos){ return pos.xyz/pos.w; } vec4 nvec4(vec3 pos){ return vec4(pos.xyz, 1.0); } vec3 rayTrace(vec3 dir,vec3 position,float dither, float fresnel){ float quality = mix(15,SSR_STEPS,fresnel); vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z); vec3 stepv = direction * mult / quality; vec3 spos = clipPosition + stepv*dither; float minZ = clipPosition.z; float maxZ = spos.z+stepv.z*0.5; spos.xy+=offsets[framemod8]*texelSize*0.5; //raymarch on a quarter res depth buffer for improved cache coherency for (int i = 0; i < int(quality+1); i++) { float sp=texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).x; if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)){ return vec3(spos.xy,sp); } spos += stepv; //small bias minZ = maxZ-0.00004/ld(spos.z); maxZ += stepv.z; } return vec3(1.1); } float facos(float sx){ float x = clamp(abs( sx ),0.,1.); float a = sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 ); return sx > 0. ? a : pi - a; } float bayer2(vec2 a){ a = floor(a); return fract(dot(a,vec2(0.5,a.y*0.75))); } float cdist(vec2 coord) { return max(abs(coord.s-0.5),abs(coord.t-0.5))*2.0; } #define PW_DEPTH 1.0 //[0.5 1.0 1.5 2.0 2.5 3.0] #define PW_POINTS 1 //[2 4 6 8 16 32] #define bayer4(a) (bayer2( .5*(a))*.25+bayer2(a)) #define bayer8(a) (bayer4( .5*(a))*.25+bayer2(a)) #define bayer16(a) (bayer8( .5*(a))*.25+bayer2(a)) #define bayer32(a) (bayer16(.5*(a))*.25+bayer2(a)) #define bayer64(a) (bayer32(.5*(a))*.25+bayer2(a)) #define bayer128(a) fract(bayer64(.5*(a))*.25+bayer2(a)) vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) { float waveZ = mix(20.0,0.25,iswater); float waveM = mix(0.0,4.0,iswater); vec3 parallaxPos = posxz; vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH; float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) * 0.5; parallaxPos.xz += waterHeight * vec; return parallaxPos; } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort) { float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * nbRot * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } //Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } vec4 hash44(vec4 p4) { p4 = fract(p4 * vec4(.1031, .1030, .0973, .1099)); p4 += dot(p4, p4.wzxy+33.33); return fract((p4.xxyz+p4.yzzw)*p4.zywx); } vec3 TangentToWorld(vec3 N, vec3 H) { vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } float GGX (vec3 n, vec3 v, vec3 l, float r, float F0) { r*=r;r*=r; vec3 h = l + v; float hn = inversesqrt(dot(h, h)); float dotLH = clamp(dot(h,l)*hn,0.,1.); float dotNH = clamp(dot(h,n)*hn,0.,1.); float dotNL = clamp(dot(n,l),0.,1.); float dotNHsq = dotNH*dotNH; float denom = dotNHsq * r - dotNHsq + 1.; float D = r / (3.141592653589793 * denom * denom); float F = F0 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH); float k2 = .25 * r; return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2); } //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// /* DRAWBUFFERS:27 */ void main() { vec2 tempOffset=offsets[framemod8]; float iswater = normalMat.w; vec3 fragC = gl_FragCoord.xyz*vec3(texelSize,1.0); vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0)); gl_FragData[0] = texture2D(texture, lmtexcoord.xy)*color; vec3 albedo = toLinear(gl_FragData[0].rgb); if (iswater > 0.4) { albedo = vec3(0.42,0.6,0.7); gl_FragData[0] = vec4(0.42,0.6,0.7,0.7); } if (iswater > 0.9) { gl_FragData[0] = vec4(0.0); } vec3 normal = normalMat.xyz; vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; mat3 tbnMatrix = mat3(tangent.x, binormal.x, normal.x, tangent.y, binormal.y, normal.y, tangent.z, binormal.z, normal.z); if (iswater > 0.4){ float bumpmult = 1.; if (iswater > 0.9) bumpmult = 1.; float parallaxMult = bumpmult; vec3 posxz = p3+cameraPosition; posxz.xz-=posxz.y; if (iswater < 0.9) posxz.xz *= 3.0; vec3 bump; posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*fragpos)); bump = normalize(getWaveHeight(posxz.xz,iswater)); bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); normal = normalize(bump * tbnMatrix); } vec3 diffuseLight = texture2D(gaux1,(lmtexcoord.zw*15.+0.5)*texelSize).rgb; vec3 color = diffuseLight*albedo*8./150./3.; if (iswater > 0.0){ float f0 = iswater > 0.1? 0.02 : 0.05*(1.0-gl_FragData[0].a); float roughness = 0.02; float emissive = 0.0; float F0 = f0; vec3 reflectedVector = reflect(normalize(fragpos), normal); float normalDotEye = dot(normal, normalize(fragpos)); float fresnel = pow(clamp(1.0 + normalDotEye,0.0,1.0), 5.0); fresnel = mix(F0,1.0,fresnel); if (iswater > 0.4){ fresnel = fresnel*0.87+0.04; //faking additionnal roughness to the water roughness = 0.1; } vec3 wrefl = mat3(gbufferModelViewInverse)*reflectedVector; vec4 sky_c = skyCloudsFromTex(wrefl,gaux1)*(1.0-isEyeInWater); sky_c.rgb *= lmtexcoord.w*lmtexcoord.w*255*255/240./240./150.*8./3.; vec4 reflection = vec4(sky_c.rgb,0.); #ifdef SCREENSPACE_REFLECTIONS vec3 rtPos = rayTrace(reflectedVector,fragpos.xyz,blueNoise(), fresnel); if (rtPos.z <1.){ vec4 fragpositionPrev = gbufferProjectionInverse * vec4(rtPos*2.-1.,1.); fragpositionPrev /= fragpositionPrev.w; vec3 sampleP = fragpositionPrev.xyz; fragpositionPrev = gbufferModelViewInverse * fragpositionPrev; vec4 previousPosition = fragpositionPrev + vec4(cameraPosition-previousCameraPosition,0.); previousPosition = gbufferPreviousModelView * previousPosition; previousPosition = gbufferPreviousProjection * previousPosition; previousPosition.xy = previousPosition.xy/previousPosition.w*0.5+0.5; reflection.a = 1.0; reflection.rgb = texture2D(gaux2,previousPosition.xy).rgb; } #endif reflection.rgb = mix(sky_c.rgb, reflection.rgb, reflection.a); vec3 reflected= reflection.rgb*fresnel; float alpha0 = gl_FragData[0].a; //correct alpha channel with fresnel gl_FragData[0].a = -gl_FragData[0].a*fresnel+gl_FragData[0].a+fresnel; gl_FragData[0].rgb =clamp(color/gl_FragData[0].a*alpha0*(1.0-fresnel)*0.1+reflected/gl_FragData[0].a*0.1,0.0,65100.0); if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.); } else gl_FragData[0].rgb = color*0.1; gl_FragData[1] = vec4(albedo,iswater); }