#include "/lib/settings.glsl" #include "/lib/res_params.glsl" // uniform int dhRenderDistance; uniform float frameTimeCounter; #include "/lib/Shadow_Params.glsl" flat varying vec3 averageSkyCol_Clouds; flat varying vec3 averageSkyCol; flat varying vec3 sunColor; flat varying vec3 moonColor; flat varying vec3 lightSourceColor; flat varying vec3 zenithColor; flat varying vec2 tempOffsets; flat varying float exposure; flat varying float avgBrightness; flat varying float rodExposure; flat varying float avgL2; flat varying float centerDepth; #ifdef Daily_Weather flat varying vec4 dailyWeatherParams0; flat varying vec4 dailyWeatherParams1; #endif uniform int hideGUI; flat varying vec4 CurrentFrame_dailyWeatherParams0; flat varying vec4 CurrentFrame_dailyWeatherParams1; uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D depthtex0; uniform sampler2D depthtex1; uniform sampler2D depthtex2; uniform mat4 gbufferModelViewInverse; uniform vec3 sunPosition; uniform vec2 texelSize; uniform float sunElevation; uniform float eyeAltitude; uniform float near; // uniform float far; uniform float frameTime; uniform int frameCounter; uniform float rainStrength; // uniform int worldTime; vec3 sunVec = normalize(mat3(gbufferModelViewInverse) * sunPosition); // vec3 sunVec = normalize(LightDir); #include "/lib/sky_gradient.glsl" #include "/lib/util.glsl" #include "/lib/ROBOBO_sky.glsl" float luma(vec3 color) { return dot(color,vec3(0.21, 0.72, 0.07)); } vec3 rodSample(vec2 Xi) { float r = sqrt(1.0f - Xi.x*Xi.y); float phi = 2 * 3.14159265359 * Xi.y; return normalize(vec3(cos(phi) * r, sin(phi) * r, Xi.x)).xzy; } //Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float tanh(float x){ return (exp(x) - exp(-x))/(exp(x) + exp(-x)); } float ld(float depth) { return (2.0 * near) / (far + near - depth * (far - near)); // (-depth * (far - near)) = (2.0 * near)/ld - far - near } uniform float nightVision; uniform int worldDay; void getWeatherParams( inout vec4 weatherParams0, inout vec4 weatherParams1, float layer0_coverage, float layer1_coverage, float layer2_coverage, float uniformFog_density, float layer0_density, float layer1_density, float layer2_density, float cloudyFog_density ){ weatherParams0 = vec4(layer0_coverage, layer1_coverage, layer2_coverage, uniformFog_density); weatherParams1 = vec4(layer0_density, layer1_density, layer2_density, cloudyFog_density); } float hash11(float p) { p = fract(p * .1031); p *= p + 33.33; p *= p + p; return fract(p); } void main() { gl_Position = ftransform()*0.5+0.5; gl_Position.xy = gl_Position.xy*vec2(18.+258*2,258.)*texelSize; gl_Position.xy = gl_Position.xy*2.-1.0; #ifdef OVERWORLD_SHADER /////////////////////////////////// /// --- AMBIENT LIGHT STUFF --- /// /////////////////////////////////// averageSkyCol_Clouds = vec3(0.0); averageSkyCol = vec3(0.0); vec2 sample3x3[9] = vec2[]( vec2(-1.0, -0.3), vec2( 0.0, 0.0), vec2( 1.0, -0.3), vec2(-1.0, -0.5), vec2( 0.0, -0.5), vec2( 1.0, -0.5), vec2(-1.0, -1.0), vec2( 0.0, -1.0), vec2( 1.0, -1.0) ); // sample in a 3x3 pattern to get a good area for average color int maxIT = 9; // int maxIT = 20; for (int i = 0; i < maxIT; i++) { vec3 pos = vec3(0.0,1.0,0.0); pos.xy += normalize(sample3x3[i]) * vec2(0.3183,0.9000); averageSkyCol_Clouds += 1.5 * (skyCloudsFromTex(pos,colortex4).rgb/maxIT/150.0); averageSkyCol += 1.5 * (skyFromTex(pos,colortex4).rgb/maxIT/150.0); } // maximum control of color and luminance // vec3 minimumlight = vec3(0.5,0.75,1.0) * nightVision; // averageSkyCol_Clouds = max( normalize(averageSkyCol_Clouds) * min(luma(averageSkyCol_Clouds) * 3.0,2.5) * (1.0-rainStrength*0.7), minimumlight); vec3 minimumlight = vec3(0.02) * 0.2 * MIN_LIGHT_AMOUNT + nightVision * 0.05; averageSkyCol_Clouds = max(normalize(averageSkyCol_Clouds + 1e-6) * min(luma(averageSkyCol_Clouds) * 3.0,2.5),0.0); averageSkyCol = max(averageSkyCol * PLANET_GROUND_BRIGHTNESS,0.0) + max(minimumlight, 0.02 * 0.2); //////////////////////////////////////// /// --- SUNLIGHT/MOONLIGHT STUFF --- /// //////////////////////////////////////// vec2 planetSphere = vec2(0.0); float sunVis = clamp(sunElevation,0.0,0.05)/0.05*clamp(sunElevation,0.0,0.05)/0.05; float moonVis = clamp(-sunElevation,0.0,0.05)/0.05*clamp(-sunElevation,0.0,0.05)/0.05; vec3 skyAbsorb = vec3(0.0); sunColor = calculateAtmosphere(vec3(0.0), sunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.0); sunColor = sunColorBase/4000.0 * skyAbsorb; moonColor = moonColorBase/4000.0; // lightSourceColor = sunVis >= 1e-5 ? sunColor * sunVis : moonColor * moonVis; lightSourceColor = sunColor * sunVis + moonColor * moonVis; #endif ////////////////////////////////// /// --- WEATHER PARAMETERS --- /// ////////////////////////////////// #ifdef Daily_Weather // this is horrid and i hate it // store 8 values that control cloud parameters. // as the day counter changes, switch to a different set of stored values. #ifdef CHOOSE_RANDOM_WEATHER_PROFILE int dayCounter = int(clamp(hash11(float(mod(worldDay, 1000))) * 10.0, 0,10)); #else int dayCounter = int(mod(worldDay, 10)); #endif vec4 weatherParameters_A[10] = vec4[]( vec4( DAY0_l0_coverage, DAY0_l1_coverage, DAY0_l2_coverage, DAY0_ufog_density), vec4( DAY1_l0_coverage, DAY1_l1_coverage, DAY1_l2_coverage, DAY1_ufog_density), vec4( DAY2_l0_coverage, DAY2_l1_coverage, DAY2_l2_coverage, DAY2_ufog_density), vec4( DAY3_l0_coverage, DAY3_l1_coverage, DAY3_l2_coverage, DAY3_ufog_density), vec4( DAY4_l0_coverage, DAY4_l1_coverage, DAY4_l2_coverage, DAY4_ufog_density), vec4( DAY5_l0_coverage, DAY5_l1_coverage, DAY5_l2_coverage, DAY5_ufog_density), vec4( DAY6_l0_coverage, DAY6_l1_coverage, DAY6_l2_coverage, DAY6_ufog_density), vec4( DAY7_l0_coverage, DAY7_l1_coverage, DAY7_l2_coverage, DAY7_ufog_density), vec4( DAY8_l0_coverage, DAY8_l1_coverage, DAY8_l2_coverage, DAY8_ufog_density), vec4( DAY9_l0_coverage, DAY9_l1_coverage, DAY9_l2_coverage, DAY9_ufog_density) ); vec4 weatherParameters_B[10] = vec4[]( vec4(DAY0_l0_density, DAY0_l1_density, DAY0_l2_density, DAY0_cfog_density), vec4(DAY1_l0_density, DAY1_l1_density, DAY1_l2_density, DAY1_cfog_density), vec4(DAY2_l0_density, DAY2_l1_density, DAY2_l2_density, DAY2_cfog_density), vec4(DAY3_l0_density, DAY3_l1_density, DAY3_l2_density, DAY3_cfog_density), vec4(DAY4_l0_density, DAY4_l1_density, DAY4_l2_density, DAY4_cfog_density), vec4(DAY5_l0_density, DAY5_l1_density, DAY5_l2_density, DAY5_cfog_density), vec4(DAY6_l0_density, DAY6_l1_density, DAY6_l2_density, DAY6_cfog_density), vec4(DAY7_l0_density, DAY7_l1_density, DAY7_l2_density, DAY7_cfog_density), vec4(DAY8_l0_density, DAY8_l1_density, DAY8_l2_density, DAY8_cfog_density), vec4(DAY9_l0_density, DAY9_l1_density, DAY9_l2_density, DAY9_cfog_density) ); CurrentFrame_dailyWeatherParams0 = weatherParameters_A[dayCounter]; CurrentFrame_dailyWeatherParams1 = weatherParameters_B[dayCounter]; vec4 rainyWeatherParameters_A[3] = vec4[]( // vec4(DAY0_l0_coverage, DAY0_l1_coverage, DAY0_l2_coverage, DAY0_ufog_density), vec4(1.3,0.0,0.0,0.0), vec4(0.5,0.0,0.0,0.0), vec4(0.0,0.0,0.0,0.0) ); vec4 rainyWeatherParameters_B[3] = vec4[]( // vec4(DAY7_l0_density, DAY7_l1_density, DAY7_l2_density, DAY7_cfog_density), vec4(0.1,0.0,0.0,0.0), vec4(0.1,0.0,0.0,0.0), vec4(0.0,0.0,0.0,0.0) ); // if(hideGUI == 1){ // CurrentFrame_dailyWeatherParams0 = rainyWeatherParameters_A[worldDay%2]; // CurrentFrame_dailyWeatherParams1 = rainyWeatherParameters_B[worldDay%2]; // } else { // CurrentFrame_dailyWeatherParams0 = vec4(0.5,0.0,0.0,0.0); // CurrentFrame_dailyWeatherParams1 = vec4(0.1,0.5,0.0,0.0); // } #if defined Daily_Weather dailyWeatherParams0 = vec4(sqrt(texelFetch2D(colortex4,ivec2(1,1),0).rgb/ 1500.0), 0.0); dailyWeatherParams1 = vec4(texelFetch2D(colortex4,ivec2(2,1),0).rgb / 1500.0, 0.0); dailyWeatherParams0.a = texelFetch2D(colortex4,ivec2(3,1),0).x/1500.0; dailyWeatherParams1.a = texelFetch2D(colortex4,ivec2(3,1),0).y/1500.0; #endif #endif ////////////////////////////// /// --- EXPOSURE STUFF --- /// ////////////////////////////// float avgLuma = 0.0; float m2 = 0.0; int n=100; vec2 clampedRes = max(1.0/texelSize,vec2(1920.0,1080.)); float avgExp = 0.0; float avgB = 0.0; vec2 resScale = vec2(1920.,1080.)/clampedRes; const int maxITexp = 50; float w = 0.0; for (int i = 0; i < maxITexp; i++){ vec2 ij = R2_samples((frameCounter%2000)*maxITexp+i); vec2 tc = 0.5 + (ij-0.5) * 0.7; vec3 sp = texture2D(colortex6, tc/16. * resScale+vec2(0.375*resScale.x+4.5*texelSize.x,.0)).rgb; avgExp += log(sqrt(luma(sp))); avgB += log(min(dot(sp,vec3(0.07,0.22,0.71)),8e-2)); } avgExp = exp(avgExp/maxITexp); avgB = exp(avgB/maxITexp); avgBrightness = clamp(mix(avgExp,texelFetch2D(colortex4,ivec2(10,37),0).g,0.95),0.00003051757,65000.0); float L = max(avgBrightness,1e-8); float keyVal = 1.03-2.0/(log(L*4000/150.*8./3.0+1.0)/log(10.0)+2.0); float expFunc = 0.5+0.5*tanh(log(L)); // float targetExposure = 1.0/log(L+1.05); float targetExposure = (EXPOSURE_DARKENING * 0.35)/log(L+1.0 + EXPOSURE_BRIGHTENING * 0.05); // float targetExposure = 0.18/log2(L*2.5+1.045)*0.62; // choc original avgL2 = clamp(mix(avgB,texelFetch2D(colortex4,ivec2(10,37),0).b,0.985),0.00003051757,65000.0); float targetrodExposure = max(0.012/log2(avgL2+1.002)-0.1,0.0)*1.2; exposure = max(targetExposure, 0.0); // exposure = mix(0.0, 1.0, min(targetExposure,1.0)); // exposure = 1; float currCenterDepth = ld(texture2D(depthtex2, vec2(0.5)*RENDER_SCALE).r); centerDepth = mix(sqrt(texelFetch2D(colortex4,ivec2(14,37),0).g/65000.0), currCenterDepth, clamp(DoF_Adaptation_Speed*exp(-0.016/frameTime+1.0)/(6.0+currCenterDepth*far),0.0,1.0)); centerDepth = centerDepth * centerDepth * 65000.0; rodExposure = targetrodExposure; #ifndef AUTO_EXPOSURE exposure = Manual_exposure_value; rodExposure = clamp(log(Manual_exposure_value*2.0+1.0)-0.1,0.0,2.0); #endif }