#include "/lib/settings.glsl" // #if defined END_SHADER || defined NETHER_SHADER // #undef IS_LPV_ENABLED // #endif #ifdef IS_LPV_ENABLED #extension GL_EXT_shader_image_load_store: enable #extension GL_ARB_shading_language_packing: enable #endif #include "/lib/res_params.glsl" varying vec4 lmtexcoord; varying vec4 color; uniform vec4 entityColor; #ifdef OVERWORLD_SHADER const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #ifdef TRANSLUCENT_COLORED_SHADOWS uniform sampler2D shadowcolor0; uniform sampler2DShadow shadowtex0; uniform sampler2DShadow shadowtex1; #endif uniform float lightSign; flat varying vec3 WsunVec; flat varying vec3 averageSkyCol_Clouds; flat varying vec4 lightCol; #endif flat varying float HELD_ITEM_BRIGHTNESS; const bool colortex4MipmapEnabled = true; uniform sampler2D noisetex; uniform sampler2D depthtex1; uniform sampler2D depthtex0; #ifdef DISTANT_HORIZONS uniform sampler2D dhDepthTex1; #endif uniform sampler2D colortex7; uniform sampler2D colortex12; uniform sampler2D colortex14; uniform sampler2D colortex5; uniform sampler2D colortex3; uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D texture; uniform sampler2D specular; uniform sampler2D normals; #ifdef IS_LPV_ENABLED uniform usampler1D texBlockData; uniform sampler3D texLpv1; uniform sampler3D texLpv2; #endif varying vec4 tangent; varying vec4 normalMat; varying vec3 binormal; varying vec3 flatnormal; #ifdef LARGE_WAVE_DISPLACEMENT varying vec3 shitnormal; #endif flat varying float exposure; uniform vec3 sunVec; uniform float near; // uniform float far; uniform float sunElevation; uniform int isEyeInWater; uniform float rainStrength; uniform float skyIntensityNight; uniform float skyIntensity; uniform ivec2 eyeBrightnessSmooth; uniform int frameCounter; uniform float frameTimeCounter; uniform vec2 texelSize; uniform int framemod8; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; uniform float moonIntensity; uniform float sunIntensity; uniform vec3 sunColor; uniform vec3 nsunColor; #include "/lib/util.glsl" #include "/lib/Shadow_Params.glsl" #include "/lib/color_transforms.glsl" #include "/lib/projections.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/waterBump.glsl" #ifdef OVERWORLD_SHADER flat varying float Flashing; #include "/lib/lightning_stuff.glsl" #define CLOUDSHADOWSONLY #include "/lib/volumetricClouds.glsl" #else uniform float nightVision; #endif #ifdef END_SHADER #include "/lib/end_fog.glsl" #endif #ifdef IS_LPV_ENABLED uniform int heldItemId; uniform int heldItemId2; #include "/lib/hsv.glsl" #include "/lib/lpv_common.glsl" #include "/lib/lpv_render.glsl" #endif #include "/lib/diffuse_lighting.glsl" float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } vec4 blueNoise(vec2 coord){ return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ; } float interleaved_gradientNoise_temporal(){ return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521); } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)); return noise; } float R2_dither(){ vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0; vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * coord.x + alpha.y * coord.y ) ; } const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), vec2(-1.,3.)/8., vec2(5.0,1.)/8., vec2(-3,-5.)/8., vec2(-5.,5.)/8., vec2(-7.,-1.)/8., vec2(3,7.)/8., vec2(7.,-7.)/8.); #define PW_DEPTH 1.5 //[0.5 1.0 1.5 2.0 2.5 3.0] #define PW_POINTS 2 //[2 4 6 8 16 32] varying vec3 viewVector; vec3 getParallaxDisplacement(vec3 posxz) { vec3 parallaxPos = posxz; vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH; // float waterHeight = (1.0 - (getWaterHeightmap(posxz.xz)*0.5+0.5)) * 2.0 - 1.0; float waterHeight = getWaterHeightmap(posxz.xz) * 2.0; parallaxPos.xz -= waterHeight * vec; return parallaxPos; } vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){ float bumpmult = puddle_values; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); // return normalize(bump*tbnMatrix); } vec2 CleanSample( int samples, float totalSamples, float noise ){ // this will be used to make 1 full rotation of the spiral. the mulitplication is so it does nearly a single rotation, instead of going past where it started float variance = noise * 0.897; // for every sample input, it will have variance applied to it. float variedSamples = float(samples) + variance; // for every sample, the sample position must change its distance from the origin. // otherwise, you will just have a circle. float spiralShape = pow(variedSamples / (totalSamples + variance),0.5); float shape = 2.26; // this is very important. 2.26 is very specific float theta = variedSamples * (PI * shape); float x = cos(theta) * spiralShape; float y = sin(theta) * spiralShape; return vec2(x, y); } vec3 viewToWorld(vec3 viewPos) { vec4 pos; pos.xyz = viewPos; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } vec4 encode (vec3 n, vec2 lightmaps){ n.xy = n.xy / dot(abs(n), vec3(1.0)); n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy; vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0); return vec4(encn,vec2(lightmaps.x,lightmaps.y)); } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } float encodeVec2(float x,float y){ return encodeVec2(vec2(x,y)); } float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater, inout float reflectLength){ float quality = mix(15,SSR_STEPS,fresnel); // quality = SSR_STEPS; vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z); vec3 stepv = direction * mult / quality * vec3(RENDER_SCALE,1.0); vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither; float minZ = clipPosition.z; float maxZ = spos.z+stepv.z*0.5; spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE; float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases for (int i = 0; i <= int(quality); i++) { // decode depth buffer // float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0); float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4.0),0).a/65000.0); sp = invLinZ(sp); if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp); spos += stepv; //small bias if(inwater) { minZ = maxZ-0.00035/ld(spos.z); }else{ minZ = maxZ-0.0001/max(ld(spos.z), (0.0 + position.z*position.z*0.001)); } maxZ += stepv.z; reflectLength += 1.0 / quality; // for shit } return vec3(1.1); } float GGX(vec3 n, vec3 v, vec3 l, float r, float f0) { r = max(pow(r,2.5), 0.0001); vec3 h = l + v; float hn = inversesqrt(dot(h, h)); float dotLH = clamp(dot(h,l)*hn,0.,1.); float dotNH = clamp(dot(h,n)*hn,0.,1.) ; float dotNL = clamp(dot(n,l),0.,1.); float dotNHsq = dotNH*dotNH; float denom = dotNHsq * r - dotNHsq + 1.; float D = r / (3.141592653589793 * denom * denom); float F = f0 + (1. - f0) * exp2((-5.55473*dotLH-6.98316)*dotLH); float k2 = .25 * r; return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2); } uniform float dhFarPlane; #include "/lib/DistantHorizons_projections.glsl" // #undef BASIC_SHADOW_FILTER #ifdef OVERWORLD_SHADER float ComputeShadowMap(inout vec3 directLightColor, vec3 playerPos, float maxDistFade, float noise){ if(maxDistFade <= 0.0) return 1.0; // setup shadow projection vec3 projectedShadowPosition = mat3(shadowModelView) * playerPos + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; // un-distort #ifdef DISTORT_SHADOWMAP float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; #else float distortFactor = 1.0; #endif // hamburger projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5); float shadowmap = 0.0; vec3 translucentTint = vec3(0.0); #ifndef HAND projectedShadowPosition.z -= 0.0001; #endif #if defined ENTITIES projectedShadowPosition.z -= 0.0002; #endif #ifdef BASIC_SHADOW_FILTER int samples = int(SHADOW_FILTER_SAMPLE_COUNT * 0.5); float rdMul = 14.0*distortFactor*d0*k/shadowMapResolution; for(int i = 0; i < samples; i++){ vec2 offsetS = CleanSample(i, samples - 1, noise) * 0.3; projectedShadowPosition.xy += rdMul*offsetS; #else int samples = 1; #endif #ifdef TRANSLUCENT_COLORED_SHADOWS // determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z) * 2.0,0.0,1.0),2.0); // get opaque shadow data to get opaque data from translucent shadows. float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x; shadowmap += max(opaqueShadow, shadowDepthDiff); // get translucent shadow data vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy); // this curve simply looked the nicest. it has no other meaning. float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2); // normalize the color to remove luminance, and keep the hue. remove all opaque color. // mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster. translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * shadowAlpha; // make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0 translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff); #else shadowmap += shadow2D(shadow, projectedShadowPosition).x; #endif #ifdef BASIC_SHADOW_FILTER } #endif #ifdef TRANSLUCENT_COLORED_SHADOWS // tint the lightsource color with the translucent shadow color directLightColor *= mix(vec3(1.0), translucentTint.rgb / samples, maxDistFade); #endif return mix(1.0, shadowmap / samples, maxDistFade); } #endif void convertHandDepth(inout float depth) { float ndcDepth = depth * 2.0 - 1.0; ndcDepth /= MC_HAND_DEPTH; depth = ndcDepth * 0.5 + 0.5; } void Emission( inout vec3 Lighting, vec3 Albedo, float Emission, float exposure ){ float autoBrightnessAdjust = mix(5.0, 100.0, clamp(exp(-10.0*exposure),0.0,1.0)); if( Emission < 254.5/255.0) Lighting = mix(Lighting, Albedo * Emissive_Brightness * autoBrightnessAdjust * 0.1, pow(Emission, Emissive_Curve)); // old method.... idk why } /* uniform float viewWidth; uniform float viewHeight; void frisvad(in vec3 n, out vec3 f, out vec3 r){ if(n.z < -0.9) { f = vec3(0.,-1,0); r = vec3(-1, 0, 0); } else { float a = 1./(1.+n.z); float b = -n.x*n.y*a; f = vec3(1. - n.x*n.x*a, b, -n.x) ; r = vec3(b, 1. - n.y*n.y*a , -n.y); } } mat3 CoordBase(vec3 n){ vec3 x,y; frisvad(n,x,y); return mat3(x,y,n); } vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float fma(float a,float b,float c){ return a * b + c; } //// thank you Zombye | the paper: https://ggx-research.github.io/publication/2023/06/09/publication-ggx.html vec3 SampleVNDFGGX( vec3 viewerDirection, // Direction pointing towards the viewer, oriented such that +Z corresponds to the surface normal vec2 alpha, // Roughness parameter along X and Y of the distribution float xy // Pair of uniformly distributed numbers in [0, 1) ) { // alpha *= alpha; // Transform viewer direction to the hemisphere configuration viewerDirection = normalize(vec3(alpha * viewerDirection.xy, viewerDirection.z)); // Sample a reflection direction off the hemisphere const float tau = 6.2831853; // 2 * pi float phi = tau * xy; float cosTheta = fma(1.0 - xy, 1.0 + viewerDirection.z, -viewerDirection.z) ; float sinTheta = sqrt(clamp(1.0 - cosTheta * cosTheta, 0.0, 1.0)); // xonk note, i dont know what im doing but this kinda does what i want so whatever float attemptTailClamp = clamp(sinTheta,max(cosTheta-0.25,0), cosTheta); float attemptTailClamp2 = clamp(cosTheta,max(sinTheta-0.25,0), sinTheta); vec3 reflected = vec3(vec2(cos(phi), sin(phi)) * attemptTailClamp2, attemptTailClamp); // vec3 reflected = vec3(vec2(cos(phi), sin(phi)) * sinTheta, cosTheta); // Evaluate halfway direction // This gives the normal on the hemisphere vec3 halfway = reflected + viewerDirection; // Transform the halfway direction back to hemiellispoid configuation // This gives the final sampled normal return normalize(vec3(alpha * halfway.xy, halfway.z)); } */ //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// /* RENDERTARGETS:2,7,11,14 */ void main() { if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 ) { vec3 FragCoord = gl_FragCoord.xyz; #ifdef HAND convertHandDepth(FragCoord.z); #endif vec2 tempOffset = offsets[framemod8]; vec3 viewPos = toScreenSpace(FragCoord*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5, 0.0)); vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// MATERIAL MASKS //////////////////////////////// //////////////////////////////////////////////////////////////////////////////// float MATERIALS = normalMat.w; // 1.0 = water mask // 0.9 = entity mask // 0.8 = reflective entities // 0.7 = reflective blocks // 0.1 = hand mask #ifdef HAND MATERIALS = 0.1; #endif // bool isHand = abs(MATERIALS - 0.1) < 0.01; bool isWater = MATERIALS > 0.99; bool isReflectiveEntity = abs(MATERIALS - 0.8) < 0.01; bool isReflective = abs(MATERIALS - 0.7) < 0.01 || isWater || isReflectiveEntity; bool isEntity = abs(MATERIALS - 0.9) < 0.01 || isReflectiveEntity; //////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// ALBEDO ///////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// gl_FragData[0] = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color; float UnchangedAlpha = gl_FragData[0].a; #ifdef WhiteWorld gl_FragData[0].rgb = vec3(0.5); gl_FragData[0].a = 1.0; #endif vec3 Albedo = toLinear(gl_FragData[0].rgb); #ifndef WhiteWorld #ifdef Vanilla_like_water if (isWater) Albedo *= sqrt(luma(Albedo)); #else if (isWater){ Albedo = vec3(0.0); gl_FragData[0].a = 1.0/255.0; } #endif #endif #ifdef ENTITIES Albedo.rgb = mix(Albedo.rgb, entityColor.rgb, clamp(entityColor.a*1.5,0,1)); #endif vec4 GLASS_TINT_COLORS = vec4(Albedo, UnchangedAlpha); #ifdef BIOME_TINT_WATER if (isWater) GLASS_TINT_COLORS.rgb = toLinear(color.rgb); #endif //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// NORMALS /////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// vec3 normal = normalMat.xyz; // in viewSpace #ifdef LARGE_WAVE_DISPLACEMENT if (isWater){ normal = viewToWorld(normal) ; normal.xz = shitnormal.xy; normal = worldToView(normal); } #endif vec3 worldSpaceNormal = viewToWorld(normal).xyz; vec2 TangentNormal = vec2(0); // for refractions vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w); mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x, tangent.y, tangent2.y, normal.y, tangent.z, tangent2.z, normal.z); vec3 NormalTex = vec3(texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).xy,0.0); NormalTex.xy = NormalTex.xy*2.0-1.0; NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0) ; // tangent space normals for refraction TangentNormal = NormalTex.xy*0.5+0.5; #ifndef HAND if (isWater){ vec3 posxz = (mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz) + cameraPosition; // make the waves flow in the direction the water faces, except for perfectly up facing parts. if(abs(worldSpaceNormal.y) < 0.9995) posxz.xz -= (posxz.y + frameTimeCounter*3 * WATER_WAVE_SPEED) * normalize(worldSpaceNormal.xz) ; posxz.xyz = getParallaxDisplacement(posxz); vec3 bump = normalize(getWaveNormal(posxz, false)); float bumpmult = 10.0 * WATER_WAVE_STRENGTH; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); NormalTex.xyz = bump; // tangent space normals for refraction TangentNormal = (bump.xy/3.0)*0.5+0.5; } #endif normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0); gl_FragData[2] = vec4(encodeVec2(TangentNormal), encodeVec2(GLASS_TINT_COLORS.rg), encodeVec2(GLASS_TINT_COLORS.ba), 1.0); //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// SPECULARS ///////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// vec3 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rga; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// DIFFUSE LIGHTING ////////////////////////////// //////////////////////////////////////////////////////////////////////////////// vec2 lightmap = lmtexcoord.zw; // lightmap.y = 1.0; #ifndef OVERWORLD_SHADER lightmap.y = 1.0; #endif #ifdef Hand_Held_lights lightmap.x = max(lightmap.x, HELD_ITEM_BRIGHTNESS*clamp( pow(max(1.0-length(feetPlayerPos)/HANDHELD_LIGHT_RANGE,0.0),1.5),0.0,1.0)); #endif vec3 Indirect_lighting = vec3(0.0); vec3 MinimumLightColor = vec3(1.0); if(isEyeInWater == 1) MinimumLightColor = vec3(10.0); vec3 Direct_lighting = vec3(0.0); #ifdef OVERWORLD_SHADER vec3 DirectLightColor = lightCol.rgb/80.0; float NdotL = clamp(dot(normal, normalize(WsunVec*mat3(gbufferModelViewInverse))),0.0,1.0); NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0); float Shadows = 1.0; float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / (shadowDistance+16),0.0)*5.0,1.0)); float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / shadowDistance,0.0)*5.0,1.0)); float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0); vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz; Shadows = ComputeShadowMap(DirectLightColor, shadowPlayerPos, shadowMapFalloff, blueNoise()); Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff2); Shadows *= pow(GetCloudShadow(feetPlayerPos),3); Direct_lighting = DirectLightColor * NdotL * Shadows; vec3 AmbientLightColor = averageSkyCol_Clouds/30.0; vec3 ambientcoefs = worldSpaceNormal / dot(abs(worldSpaceNormal), vec3(1.0)); float SkylightDir = ambientcoefs.y*1.5; float skylight = max(pow(viewToWorld(flatnormal).y*0.5+0.5,0.1) + SkylightDir, 0.2); AmbientLightColor *= skylight; #endif #ifdef NETHER_SHADER // vec3 AmbientLightColor = skyCloudsFromTexLOD2(worldSpaceNormal, colortex4, 6).rgb / 15.0; // vec3 up = skyCloudsFromTexLOD2(vec3( 0, 1, 0), colortex4, 6).rgb/ 30.0; // vec3 down = skyCloudsFromTexLOD2(vec3( 0,-1, 0), colortex4, 6).rgb/ 30.0; // up *= pow( max( worldSpaceNormal.y, 0), 2); // down *= pow( max(-worldSpaceNormal.y, 0), 2); // AmbientLightColor += up + down; vec3 AmbientLightColor = vec3(0.1); #endif #ifdef END_SHADER float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0); vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds); float lightningflash = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0; vec3 lightColors = LightSourceColors(vortexBounds, lightningflash); float NdotL = clamp(dot(worldSpaceNormal, normalize(-lightPos))*0.5+0.5,0.0,1.0); NdotL *= NdotL; Direct_lighting = lightColors * endFogPhase(lightPos) * NdotL; vec3 AmbientLightColor = vec3(0.5,0.75,1.0) * 0.9 + 0.1; AmbientLightColor *= clamp(1.5 + dot(worldSpaceNormal, normalize(feetPlayerPos))*0.5,0,2); #endif #ifdef IS_LPV_ENABLED vec3 normalOffset = vec3(0.0); if (any(greaterThan(abs(worldSpaceNormal), vec3(1.0e-6)))) normalOffset = 0.5*worldSpaceNormal; #if LPV_NORMAL_STRENGTH > 0 if (any(greaterThan(abs(normal), vec3(1.0e-6)))) { vec3 texNormalOffset = -normalOffset + viewToWorld(normal); normalOffset = mix(normalOffset, texNormalOffset, (LPV_NORMAL_STRENGTH*0.01)); } #endif vec3 lpvPos = GetLpvPosition(feetPlayerPos) + normalOffset; #else const vec3 lpvPos = vec3(0.0); #endif Indirect_lighting = DoAmbientLightColor(feetPlayerPos, lpvPos, AmbientLightColor, MinimumLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy, exposure); vec3 FinalColor = (Indirect_lighting + Direct_lighting) * Albedo; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// SPECULAR LIGHTING ///////////////////////////// //////////////////////////////////////////////////////////////////////////////// #ifdef DAMAGE_BLOCK_EFFECT #undef WATER_REFLECTIONS #endif #ifndef OVERWORLD_SHADER #undef WATER_SUN_SPECULAR #endif #ifdef WATER_REFLECTIONS // vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg; // if nothing is chosen, no smoothness and no reflectance vec2 specularValues = vec2(1.0, 0.0); // hardcode specular values for select blocks like glass, water, and slime if(isReflective) specularValues = vec2(1.0, 0.02); // detect if the specular texture is used, if it is, overwrite hardcoded values if(SpecularTex.r > 0.0 && SpecularTex.g <= 1.0) specularValues = SpecularTex.rg; float roughness = pow(1.0-specularValues.r,2.0); float f0 = isReflective ? max(specularValues.g, 0.02) : specularValues.g; #ifdef HAND f0 = max(specularValues.g, 0.02); #endif // f0 = SpecularTex.g; // roughness = pow(1.0-specularValues.r,2.0); // f0 = 0.9; // roughness = 0.0; vec3 Metals = f0 > 229.5/255.0 ? normalize(Albedo+1e-7) * (dot(Albedo,vec3(0.21, 0.72, 0.07)) * 0.7 + 0.3) : vec3(1.0); // make sure zero alpha is not forced to be full alpha by fresnel on items with funny normal padding if(UnchangedAlpha <= 0.0 && !isReflective) f0 = 0.0; if (f0 > 0.0){ if(isReflective) f0 = max(f0, 0.02); vec3 Reflections_Final = vec3(0.0); vec4 Reflections = vec4(0.0); vec3 BackgroundReflection = FinalColor; vec3 SunReflection = vec3(0.0); float indoors = pow(1.0-pow(1.0-min(max(lightmap.y-0.6,0.0)*3.0,1.0),0.5),2.0); vec3 reflectedVector = reflect(normalize(viewPos), normal); float normalDotEye = dot(normal, normalize(viewPos)); float fresnel = pow(clamp(1.0 + normalDotEye, 0.0, 1.0),5.0); /* int seed = (frameCounter%40000) + frameCounter*2; float noise = fract(R2_samples(seed).y + (1-blueNoise())); mat3 Basis = CoordBase(viewToWorld(normal)); vec3 ViewDir = -normalize(feetPlayerPos)*Basis; vec3 SamplePoints = SampleVNDFGGX(ViewDir, vec2(roughness), noise); vec3 Ln = reflect(-ViewDir, SamplePoints); vec3 L = Basis * Ln; fresnel = pow(clamp(1.0 + dot(-Ln, SamplePoints),0.0,1.0), 5.0); */ #ifdef SNELLS_WINDOW // snells window looking thing if(isEyeInWater == 1) fresnel = pow(clamp(1.5 + normalDotEye,0.0,1.0), 25.0); #endif fresnel = mix(f0, 1.0, fresnel); // Sun, Sky, and screen-space reflections #ifdef OVERWORLD_SHADER #ifdef WATER_SUN_SPECULAR SunReflection = Direct_lighting * GGX(normal, -normalize(viewPos), WsunVec*mat3(gbufferModelViewInverse), max(roughness,0.035), f0) * Metals; #endif #ifdef WATER_BACKGROUND_SPECULAR if(isEyeInWater == 0 && !isReflectiveEntity) BackgroundReflection = skyCloudsFromTex(mat3(gbufferModelViewInverse) * reflectedVector, colortex4).rgb / 30.0 * Metals; #endif if(isEyeInWater == 1 && isWater) BackgroundReflection.rgb = exp(-8.0 * vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B)) * clamp(WsunVec.y*lightCol.a,0,1); #else #ifdef WATER_BACKGROUND_SPECULAR if(isEyeInWater == 0) BackgroundReflection = skyCloudsFromTexLOD2(mat3(gbufferModelViewInverse) * reflectedVector, colortex4, 0).rgb / 30.0 * Metals; #endif #endif #ifdef SCREENSPACE_REFLECTIONS float reflectLength = 0.0; vec3 rtPos = rayTrace(reflectedVector, viewPos.xyz, interleaved_gradientNoise_temporal(), fresnel, isEyeInWater == 1,reflectLength); if (rtPos.z < 1.0){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) { Reflections.a = 1.0; Reflections.rgb = texture2D(colortex5, previousPosition.xy).rgb * Metals; } } #endif float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1); Reflections_Final = mix(mix(FinalColor, BackgroundReflection, indoors), Reflections.rgb, Reflections.a) * fresnel * visibilityFactor; Reflections_Final += SunReflection; //correct alpha channel with fresnel float alpha0 = gl_FragData[0].a; gl_FragData[0].a = -gl_FragData[0].a * fresnel + gl_FragData[0].a + fresnel; // prevent reflections from being darkened by buffer blending gl_FragData[0].rgb = clamp(FinalColor / gl_FragData[0].a*alpha0*(1.0-fresnel) * 0.1 + Reflections_Final / gl_FragData[0].a * 0.1,0.0,65100.0); if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.0); } else { gl_FragData[0].rgb = FinalColor*0.1; } #else gl_FragData[0].rgb = FinalColor*0.1; #endif #if EMISSIVE_TYPE == 2 || EMISSIVE_TYPE == 3 Emission(gl_FragData[0].rgb, Albedo, SpecularTex.b, exposure); #endif #if defined DISTANT_HORIZONS && defined DH_OVERDRAW_PREVENTION && !defined HAND bool WATER = texture2D(colortex7, gl_FragCoord.xy*texelSize).a > 0.0 && length(feetPlayerPos) > far-16*4 && texture2D(depthtex1, gl_FragCoord.xy*texelSize).x >= 1.0; if(WATER) gl_FragData[0].a = 0.0; #endif #ifndef HAND gl_FragData[1] = vec4(Albedo, MATERIALS); #endif #if DEBUG_VIEW == debug_DH_WATER_BLENDING if(gl_FragCoord.x*texelSize.x < 0.47) gl_FragData[0] = vec4(0.0); #endif #if DEBUG_VIEW == debug_NORMALS gl_FragData[0].rgb = normalize(normal.xyz) * 0.1; #endif #if DEBUG_VIEW == debug_INDIRECT gl_FragData[0].rgb = Indirect_lighting* 0.1; #endif #if DEBUG_VIEW == debug_DIRECT gl_FragData[0].rgb = Direct_lighting * 0.1; #endif gl_FragData[3].a = clamp(lightmap.y,0.0,1.0); } }