#include "/lib/settings.glsl" #define ReflectedFog flat varying vec3 averageSkyCol_Clouds; flat varying vec3 averageSkyCol; flat varying vec3 lightSourceColor; flat varying vec3 sunColor; flat varying vec3 moonColor; // flat varying vec3 zenithColor; // flat varying vec3 WsunVec; flat varying vec2 tempOffsets; flat varying float exposure; flat varying float avgBrightness; flat varying float rodExposure; flat varying float avgL2; flat varying float centerDepth; uniform sampler2D noisetex; uniform float frameTime; uniform int frameCounter; uniform float frameTimeCounter; uniform float rainStrength; uniform float eyeAltitude; uniform vec3 sunVec; uniform vec2 texelSize; uniform mat4 gbufferProjection; uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferPreviousProjection; uniform mat4 gbufferModelViewInverse; uniform mat4 gbufferModelView; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform float sunElevation; uniform vec3 sunPosition; uniform vec3 cameraPosition; // uniform float far; uniform ivec2 eyeBrightnessSmooth; vec4 lightCol = vec4(lightSourceColor, float(sunElevation > 1e-5)*2-1.); #include "/lib/util.glsl" #include "/lib/ROBOBO_sky.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/Shadow_Params.glsl" vec3 WsunVec = mat3(gbufferModelViewInverse)*sunVec; // vec3 WsunVec = normalize(LightDir); vec3 toShadowSpaceProjected(vec3 p3){ p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz; p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz; return p3; } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+frameCounter/1.6180339887); return noise; } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } #define DHVLFOG #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 feetPlayerPos = p * 2. - 1.; vec4 viewPos = iProjDiag * feetPlayerPos.xyzz + gbufferProjectionInverse[3]; return viewPos.xyz / viewPos.w; } uniform float dhFarPlane; uniform float dhNearPlane; #include "/lib/DistantHorizons_projections.glsl" vec3 DH_toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(dhProjectionInverse[0].x, dhProjectionInverse[1].y, dhProjectionInverse[2].zw); vec3 feetPlayerPos = p * 2. - 1.; vec4 viewPos = iProjDiag * feetPlayerPos.xyzz + dhProjectionInverse[3]; return viewPos.xyz / viewPos.w; } vec3 DH_toClipSpace3(vec3 viewSpacePosition) { return projMAD(dhProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5; } // float DH_ld(float dist) { // return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane)); // } // float DH_invLinZ (float lindepth){ // return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane); // } float DH_ld(float dist) { return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane)); } float DH_inv_ld (float lindepth){ return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane); } float linearizeDepthFast(const in float depth, const in float near, const in float far) { return (near * far) / (depth * (near - far) + far); } #ifdef OVERWORLD_SHADER // uniform sampler2D colortex12; // const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #define TEST #define TIMEOFDAYFOG #include "/lib/lightning_stuff.glsl" #include "/lib/volumetricClouds.glsl" #include "/lib/overworld_fog.glsl" #endif #ifdef NETHER_SHADER uniform sampler2D colortex4; #include "/lib/nether_fog.glsl" #endif #ifdef END_SHADER uniform sampler2D colortex4; #include "/lib/end_fog.glsl" #endif vec3 rodSample(vec2 Xi) { float r = sqrt(1.0f - Xi.x*Xi.y); float phi = 2 * 3.14159265359 * Xi.y; return normalize(vec3(cos(phi) * r, sin(phi) * r, Xi.x)).xzy; } //Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ vec2 R2_samples(float n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } void main() { /* DRAWBUFFERS:4 */ gl_FragData[0] = vec4(0.0); float mixhistory = 0.06; float accumuteSpeed = texelFetch2D(colortex4, ivec2(5,5), 0).r/150.0; vec2 pixelPos6 = vec2(5,5); if (gl_FragCoord.x > pixelPos6.x && gl_FragCoord.x < pixelPos6.x + 1 && gl_FragCoord.y > pixelPos6.y && gl_FragCoord.y < pixelPos6.y + 1){ mixhistory = 0.1; gl_FragData[0] = vec4(1,0,0,1); } if(accumuteSpeed < 1.0) mixhistory = 1.0; #ifdef OVERWORLD_SHADER /////////////////////////////// /// --- STORE COLOR LUT --- /// /////////////////////////////// vec3 AmbientLightTint = vec3(AmbientLight_R, AmbientLight_G, AmbientLight_B); // --- the color of the atmosphere + the average color of the atmosphere. vec3 skyGroundCol = skyFromTex(vec3(0, -1 ,0), colortex4).rgb;// * clamp(WsunVec.y*2.0,0.2,1.0); /// --- Save light values if (gl_FragCoord.x < 1. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(averageSkyCol_Clouds * AmbientLightTint,1.0); if (gl_FragCoord.x > 1. && gl_FragCoord.x < 2. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4((skyGroundCol/150.0) * AmbientLightTint,1.0); #ifdef ambientLight_only if (gl_FragCoord.x > 6. && gl_FragCoord.x < 7. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(0.0,0.0,0.0,1.0); if (gl_FragCoord.x > 8. && gl_FragCoord.x < 9. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(0.0,0.0,0.0,1.0); if (gl_FragCoord.x > 13. && gl_FragCoord.x < 14. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(0.0,0.0,0.0,1.0); #else if (gl_FragCoord.x > 6. && gl_FragCoord.x < 7. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(lightSourceColor,1.0); if (gl_FragCoord.x > 8. && gl_FragCoord.x < 9. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(sunColor,1.0); if (gl_FragCoord.x > 13. && gl_FragCoord.x < 14. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(moonColor,1.0); #endif //////////////////////////////// /// --- ATMOSPHERE IMAGE --- /// //////////////////////////////// /// --- Sky only if (gl_FragCoord.x > 18. && gl_FragCoord.y > 1. && gl_FragCoord.x < 18+257){ vec2 p = clamp(floor(gl_FragCoord.xy-vec2(18.,1.))/256.+tempOffsets/256.,0.0,1.0); vec3 viewVector = cartToSphere(p); vec2 planetSphere = vec2(0.0); vec3 sky = vec3(0.0); vec3 skyAbsorb = vec3(0.0); // float GroundDarkening = (exp2(-15 * clamp(-viewVector.y,0.0,1.0)) * 0.7+0.3); // darken the ground in the sky. sky = calculateAtmosphere((averageSkyCol*4000./2.0) , viewVector, vec3(0.0,1.0,0.0), WsunVec, -WsunVec, planetSphere, skyAbsorb, 10, blueNoise()); // sky = mix(sky, (averageSkyCol + skyAbsorb)*4000./2.0, (1.0 - exp(pow(clamp(-viewVector.y+0.5,0.0,1.0),2) * -25))); // fade atmosphere conditions for rain away when you pass above the cloud plane. float heightRelativeToClouds = clamp(1.0 - max(eyeAltitude - CloudLayer0_height,0.0) / 200.0 ,0.0,1.0); if(rainStrength > 0.0) sky = mix(sky, 3.0 + averageSkyCol*4000 * (skyAbsorb*0.7+0.3), clamp(1.0 - exp(pow(clamp(-viewVector.y+0.9,0.0,1.0),2) * -5.0),0.0,1.0) * heightRelativeToClouds * rainStrength); #ifdef AEROCHROME_MODE sky *= vec3(0.0, 0.18, 0.35); #endif gl_FragData[0] = vec4(sky / 4000.0 * Sky_Brightness, 1.0); } /// --- Sky + clouds + fog if (gl_FragCoord.x > 18.+257. && gl_FragCoord.y > 1. && gl_FragCoord.x < 18+257+257.){ vec2 p = clamp(floor(gl_FragCoord.xy-vec2(18.+257,1.))/256.+tempOffsets/256.,0.0,1.0); vec3 viewVector = cartToSphere(p); WsunVec = ( float(sunElevation > 1e-5)*2-1. )*normalize(mat3(gbufferModelViewInverse) * sunPosition); vec3 sky = texelFetch2D(colortex4,ivec2(gl_FragCoord.xy)-ivec2(257,0),0).rgb/150.0; vec3 suncol = lightSourceColor; #ifdef ambientLight_only suncol = vec3(0.0); #endif vec4 clouds = renderClouds(mat3(gbufferModelView)*viewVector*1024., vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), suncol*1.75, skyGroundCol/30.0); sky = sky*clouds.a + clouds.rgb / 5.0; // vec4 VL_Fog = GetVolumetricFog(mat3(gbufferModelView)*viewVector*1024., vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), lightSourceColor*1.75, skyGroundCol/30.0); vec4 VL_Fog = DH_GetVolumetricFog(mat3(gbufferModelView)*viewVector*1024., vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), lightSourceColor*1.75, skyGroundCol/30.0); sky = sky * VL_Fog.a + VL_Fog.rgb / 5.0; // if(p.y < 0.05) sky = averageSkyCol_Clouds; gl_FragData[0] = vec4(sky,1.0); } #endif #if defined NETHER_SHADER || defined END_SHADER vec2 fogPos = vec2(256.0 - 256.0*0.12,1.0); //Sky gradient with clouds if (gl_FragCoord.x > (fogPos.x - fogPos.x*0.22) && gl_FragCoord.y > 0.4 && gl_FragCoord.x < 535){ vec2 p = clamp(floor(gl_FragCoord.xy-fogPos)/256.+tempOffsets/256.,-0.2,1.2); vec3 viewVector = cartToSphere(p); vec3 BackgroundColor = vec3(0.0); vec4 VL_Fog = GetVolumetricFog(mat3(gbufferModelView)*viewVector*256., fract(frameCounter/1.6180339887), fract(frameCounter/2.6180339887)); BackgroundColor += VL_Fog.rgb/5.0; gl_FragData[0] = vec4(BackgroundColor, 1.0); } #endif #ifdef END_SHADER /* ---------------------- TIMER ---------------------- */ float flash = 0.0; float maxWaitTime = 5; float Timer = texelFetch2D(colortex4, ivec2(3,1), 0).x/150.0; Timer -= frameTime; if(Timer <= 0.0){ flash = 1.0; Timer = pow(hash11(frameCounter), 5) * maxWaitTime; } vec2 pixelPos0 = vec2(3,1); if (gl_FragCoord.x > pixelPos0.x && gl_FragCoord.x < pixelPos0.x + 1 && gl_FragCoord.y > pixelPos0.y && gl_FragCoord.y < pixelPos0.y + 1){ mixhistory = 1.0; gl_FragData[0] = vec4(Timer, 0.0, 0.0, 1.0); } /* ---------------------- FLASHING ---------------------- */ vec2 pixelPos1 = vec2(1,1); if (gl_FragCoord.x > pixelPos1.x && gl_FragCoord.x < pixelPos1.x + 1 && gl_FragCoord.y > pixelPos1.y && gl_FragCoord.y < pixelPos1.y + 1){ mixhistory = clamp(4.0 * frameTime,0.0,1.0); gl_FragData[0] = vec4(flash, 0.0, 0.0, 1.0); } /* ---------------------- POSITION ---------------------- */ vec2 pixelPos2 = vec2(2,1); if (gl_FragCoord.x > pixelPos2.x && gl_FragCoord.x < pixelPos2.x + 1 && gl_FragCoord.y > pixelPos2.y && gl_FragCoord.y < pixelPos2.y + 1){ mixhistory = clamp(500.0 * frameTime,0.0,1.0); vec3 LastPos = (texelFetch2D(colortex4,ivec2(2,1),0).xyz/150.0) * 2.0 - 1.0; LastPos += (hash31(frameCounter / 50) * 2.0 - 1.0); LastPos = LastPos * 0.5 + 0.5; if(Timer > maxWaitTime * 0.7 ){ LastPos = vec3(0.0); } gl_FragData[0] = vec4(LastPos, 1.0); } #endif //Temporally accumulate sky and light values vec3 temp = texelFetch2D(colortex4,ivec2(gl_FragCoord.xy),0).rgb; vec3 curr = gl_FragData[0].rgb*150.; gl_FragData[0].rgb = clamp(mix(temp, curr, mixhistory),0.0,65000.); //Exposure values if (gl_FragCoord.x > 10. && gl_FragCoord.x < 11. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(exposure, avgBrightness, avgL2,1.0); if (gl_FragCoord.x > 14. && gl_FragCoord.x < 15. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(rodExposure, centerDepth,0.0, 1.0); }