#version 120 //Render sky, volumetric clouds, direct lighting #extension GL_EXT_gpu_shader4 : enable #include "lib/settings.glsl" const bool colortex5MipmapEnabled = true; // const bool colortex4MipmapEnabled = true; \ const bool shadowHardwareFiltering = true; flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon) flat varying vec3 ambientUp; flat varying vec3 ambientLeft; flat varying vec3 ambientRight; flat varying vec3 ambientB; flat varying vec3 ambientF; flat varying vec3 ambientDown; flat varying vec3 avgAmbient; flat varying vec3 WsunVec; flat varying vec2 TAA_Offset; flat varying float tempOffsets; /* const int colortex12Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4) const int colortex11Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4) const int colortex15Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4) */ uniform sampler2D colortex0;//clouds uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16 // uniform sampler2D colortex4;//Skybox uniform sampler2D colortex3; uniform sampler2D colortex5; uniform sampler2D colortex7; // normal uniform sampler2D colortex6; // Noise uniform sampler2D colortex8; // specular // uniform sampler2D colortex9; // specular uniform sampler2D colortex10; // specular uniform sampler2D colortex11; // specular uniform sampler2D colortex12; // specular uniform sampler2D colortex13; // specular uniform sampler2D colortex14; // specular uniform sampler2D colortex15; // specular uniform sampler2D colortex16; // specular uniform sampler2D depthtex1;//depth uniform sampler2D depthtex0;//depth uniform sampler2D noisetex;//depth uniform sampler2DShadow shadow; varying vec4 normalMat; uniform int heldBlockLightValue; uniform int frameCounter; uniform int isEyeInWater; uniform float far; uniform float nightVision; uniform float near; uniform float frameTimeCounter; uniform float rainStrength; uniform mat4 gbufferProjection; uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferModelViewInverse; uniform mat4 gbufferPreviousModelView; uniform mat4 gbufferPreviousProjection; uniform vec3 previousCameraPosition; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform mat4 gbufferModelView; // uniform float viewWidth; // uniform float viewHeight; uniform float aspectRatio; uniform vec2 texelSize; uniform vec3 cameraPosition; uniform vec3 sunVec; uniform ivec2 eyeBrightnessSmooth; uniform ivec2 eyeBrightness; // uniform int worldTime; #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } vec3 toScreenSpacePrev(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } vec3 worldToView(vec3 p3) { vec4 pos = vec4(p3, 0.0); pos = gbufferModelView * pos; return pos.xyz; } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 ld(vec3 dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 srgbToLinear2(vec3 srgb){ return mix( srgb / 12.92, pow(.947867 * srgb + .0521327, vec3(2.4) ), step( .04045, srgb ) ); } vec3 blackbody2(float Temp) { float t = pow(Temp, -1.5); float lt = log(Temp); vec3 col = vec3(0.0); col.x = 220000.0 * t + 0.58039215686; col.y = 0.39231372549 * lt - 2.44549019608; col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y; col.z = 0.76078431372 * lt - 5.68078431373; col = clamp(col,0.0,1.0); col = Temp < 1000. ? col * Temp * 0.001 : col; return srgbToLinear2(col); } vec3 normVec (vec3 vec){ return vec*inversesqrt(dot(vec,vec)); } vec3 viewToWorld(vec3 viewPosition) { vec4 pos; pos.xyz = viewPosition; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } // #include "lib/settings.glsl" // #include "lib/biome_specifics.glsl" #include "lib/res_params.glsl" #include "lib/Shadow_Params.glsl" #include "lib/color_transforms.glsl" #include "lib/sky_gradient.glsl" #include "lib/stars.glsl" #include "lib/volumetricClouds.glsl" #include "lib/waterBump.glsl" #include "lib/specular.glsl" // #include "/lib/climate_settings.glsl" float lengthVec (vec3 vec){ return sqrt(dot(vec,vec)); } #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float triangularize(float dither) { float center = dither*2.0-1.0; dither = center*inversesqrt(abs(center)); return clamp(dither-fsign(center),0.0,1.0); } float interleaved_gradientNoise(){ // vec2 coord = gl_FragCoord.xy + (frameCounter%40000); vec2 coord = gl_FragCoord.xy + frameTimeCounter; // vec2 coord = gl_FragCoord.xy; float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) ); return noise ; } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } vec4 blueNoise(vec2 coord){ return texelFetch2D(colortex6, ivec2(coord )%512 , 0); } vec3 fp10Dither(vec3 color,float dither){ const vec3 mantissaBits = vec3(6.,6.,5.); vec3 exponent = floor(log2(color)); return color + dither*exp2(-mantissaBits)*exp2(exponent); } vec3 decode (vec2 encn){ vec3 n = vec3(0.0); encn = encn * 2.0 - 1.0; n.xy = abs(encn); n.z = 1.0 - n.x - n.y; n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn; return clamp(normalize(n.xyz),-1.0,1.0); } vec2 decodeVec2(float a){ const vec2 constant1 = 65535. / vec2( 256., 65536.); const float constant2 = 256. / 255.; return fract( a * constant1 ) * constant2 ; } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort){ float alpha0 = sampleNumber/nb; float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * 84.0 * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } vec3 toShadowSpaceProjected(vec3 p3){ p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz; p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz; return p3; } vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0){ float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb))); float angle = alpha * (nbRot * 3.14) + spinAngle*3.14; float ssR = alpha; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){ inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value int spCount = rayMarchSampleCount; vec3 start = toShadowSpaceProjected(rayStart); vec3 end = toShadowSpaceProjected(rayEnd); vec3 dV = (end-start); //limit ray length at 32 blocks for performance and reducing integration error //you can't see above this anyway float maxZ = min(rayLength,32.0)/(1e-8+rayLength); dV *= maxZ; vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ; rayLength *= maxZ; float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength; estEndDepth *= maxZ; estSunDepth *= maxZ; vec3 absorbance = vec3(1.0); vec3 vL = vec3(0.0); float phase = 2*mix(phaseg(VdotL, 0.4),phaseg(VdotL, 0.8),0.5); float expFactor = 11.0; vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition; for (int i=0;i -near) ? (-near -position.z) / dir.z : far*sqrt(3.) ; vec3 direction = toClipSpace3(position+dir*rayLength)-clipPosition; //convert to clip space direction.xyz = direction.xyz/max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y); //fixed step size vec3 stepv = direction *3. * clamp(MC_RENDER_QUALITY,1.,2.0)*vec3(RENDER_SCALE,1.0); vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0); spos.xy += (TAA_Offset*(texelSize/4))*RENDER_SCALE ; spos += stepv; for (int i = 0; i < int(quality); i++) { spos += stepv*(dither*0.2 +0.8) *0.5; // spos += stepv; float sp = texture2D(depthtex1,spos.xy).x; if( sp < spos.z) { float dist = abs(linZ(sp)-linZ(spos.z))/linZ(spos.z); if (dist < 0.015 ) return 0.0; } } return 1.0; } vec2 tapLocation_alternate( int sampleNumber, float spinAngle, int nb, float nbRot, float r0 ){ float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb))); float angle = alpha * (nbRot * 3.14) ; float ssR = alpha + spinAngle*3.14; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } vec2 hash21(float p) { vec3 p3 = fract(vec3(p) * vec3(.1031, .1030, .0973)); p3 += dot(p3, p3.yzx + 33.33); return fract((p3.xx+p3.yz)*p3.zy); } vec2 vogel_disk_7[7] = vec2[]( vec2(0.2506005557551467 , -0.08481388042204699) , vec2(-0.3579961502930998 , 0.22787736539225004) , vec2(0.035586177529474045, -0.6801399443380787) , vec2(0.4135705583782951 , 0.4763465923710499) , vec2(-0.8061879331972175 , -0.2244701335533563) , vec2(0.7312484456783402 , -0.560572449689252) , vec2(-0.26682165385093876, 0.8457724502394341) ); void ssAO(inout vec3 lighting, vec3 fragpos,float mulfov, vec2 noise, vec3 normal, vec2 texcoord, vec3 ambientCoefs, vec2 lightmap, float sunlight){ ivec2 pos = ivec2(gl_FragCoord.xy); const float tan70 = tan(70.*3.14/180.); float dist = 1.0 + clamp(fragpos.z*fragpos.z/50.0,0,2); // shrink sample size as distance increases float mulfov2 = gbufferProjection[1][1]/(tan70 * dist); float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*5/50.0; float rd = mulfov2 * 0.1 ; //pre-rotate direction float n = 0.0; float occlusion = 0.0; vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ; int seed = (frameCounter%40000)*2 + (1+frameCounter); float randomDir = fract(R2_samples(seed).y + noise.x ) * 1.61803398874 ; vec3 NormalSpecific = viewToWorld(normal); for (int j = 0; j < 7 ;j++) { vec2 sp = tapLocation_alternate(j, 0.0, 7, 20, randomDir); // vec2 sp = vogel_disk_7[j]; // float thing = sp.y < 0.0 && clamp(floor(abs(NormalSpecific.y)*2.0),0.0,1.0) < 1.0 ? rd * 10: rd; // vec2 sampleOffset = sp*thing; // vec2 sampleOffset2 = sp*rd ; // sampleOffset = min(sampleOffset, sampleOffset2); vec2 sampleOffset = sp*rd; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) ); vec3 vec = t0.xyz - fragpos; float dsquared = dot(vec,vec); if (dsquared > 1e-5){ if (dsquared < maxR2){ float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.); occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0); // float NdotV2 = clamp(dot(vec*inversesqrt(dsquared), normalize(RPnormal)),0.,1.); // occlusion.y += NdotV2 * clamp(1.0-dsquared/maxR2,0.0,1.0); } n += 1; } } } // occlusion *= mix(2.5, 2.0 , clamp(floor(abs(NormalSpecific.y)*2.0),0.0,1.0)); occlusion = max(1.0 - (occlusion*2.0)/n, 0.0); // float skylight = clamp(abs(ambientCoefs.y+1),0.5,1.25) * clamp(abs(ambientCoefs.y+0.5),1.0,1.25); float skylight = clamp(abs(ambientCoefs.y+1),0.5,2.0) ; // lighting *= 0.5; lighting *= mix(1.0,skylight,1); lighting = lighting*max(occlusion,pow(lightmap.x,4)); } vec3 DoContrast(vec3 Color){ float Contrast = log(50.0); return clamp(mix(vec3(0.5), Color, Contrast) ,0,255); } void ssDO(inout vec3 lighting, vec3 fragpos,float mulfov, vec2 noise, vec3 normal, vec3 RPnormal, vec2 texcoord, vec3 ambientCoefs, vec2 lightmap, float sunlight){ const int Samples = 7; vec3 Radiance = vec3(0); float occlusion = 0.0; ivec2 pos = ivec2(gl_FragCoord.xy); const float tan70 = tan(70.*3.14/180.); // float dist = 1.0 + clamp(fragpos.z*fragpos.z/50.0,0,2); // shrink sample size as distance increases float mulfov2 = gbufferProjection[1][1]/(tan70 ); float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*5/50.0; float rd = mulfov2 * 0.1 ; vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ; vec3 NormalSpecific = viewToWorld(normal); for (int j = 0; j < Samples ;j++) { vec2 sp = tapLocation_alternate(j, 0.0, 7, 20, blueNoise()); float thing = sp.y < 0.0 && clamp(floor(abs(NormalSpecific.y)*2.0),0.0,1.0) < 1.0 ? rd * 10: rd; vec2 sampleOffset = sp*thing; vec2 sampleOffset2 = sp*rd ; sampleOffset = sampleOffset2; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) ); vec3 vec = t0.xyz - fragpos; float dsquared = dot(vec,vec); float NdotV2 = clamp(dot(vec*inversesqrt(dsquared), normalize(RPnormal)),0.,1.); if (dsquared < maxR2){ // float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.); // occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0); vec3 previousPosition = mat3(gbufferModelViewInverse) * t0 + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0){ Radiance += NdotV2*texture2D(colortex5,previousPosition.xy).rgb ; } } } } lighting = vec3(1) + Radiance/Samples; } vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){ float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases float stepSize = stepsizes / dist; int maxSteps = STEPS; vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ? (-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far; vec3 end = toClipSpace3(position+dir*rayLength) ; vec3 direction = end-clipPosition ; //convert to clip space float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize; //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0; vec3 stepv = direction/len; int iterations = min(int(min(len, mult*len)-2), maxSteps); //Do one iteration for closest texel (good contact shadows) vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ; spos.xy += TAA_Offset*texelSize*0.5*RENDER_SCALE; spos += stepv/(stepSize/2); for(int i = 0; i < iterations; i++){ if (spos.x < 0.0 || spos.y < 0.0 || spos.z < 0.0 || spos.x > 1.0 || spos.y > 1.0 || spos.z > 1.0) return vec3(1.1); spos += stepv*noise; float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/ texelSize/4),0).w/65000.0); float currZ = linZ(spos.z); if( sp < currZ) { float dist = abs(sp-currZ)/currZ; if (dist <= 0.075) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0); } } return vec3(1.1); } vec3 cosineHemisphereSample(vec2 Xi, float roughness){ float r = sqrt(Xi.x); float theta = 2.0 * 3.14159265359 * Xi.y; float x = r * cos(theta); float y = r * sin(theta); return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.))); } vec3 TangentToWorld(vec3 N, vec3 H, float roughness){ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } void rtAO(inout vec3 lighting, vec3 normal, vec2 noise, vec3 fragpos, float lightmap, float inShadow){ int nrays = 4; float occlude = 0.0; float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength); for (int i = 0; i < nrays; i++){ int seed = (frameCounter%40000)*nrays+i; vec2 ij = fract(R2_samples(seed) + noise.rg); vec3 rayDir = TangentToWorld( normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0) ; #ifdef HQ_SSGI vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 30.); // ssr rt #else vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 24.); // choc sspt #endif // vec3 lightDir = normalize(vec3(0.2,0.8,0.2)); // float skyLightDir = dot(rayDir,lightDir); // the positons where the occlusion happens float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens // if (rayHit.z > 1.0) occlude += skyLightDir; occlude += normalize(rayHit.z - 1.0) / (1.1-rayDir.y); } // occlude = mix( occlude,1, inShadow); // occlude = occlude*0.5 + 0.5; // lighting *= 2.5; lighting *= occlude/nrays; } // void rtGI(inout vec3 lighting, vec3 normal,vec2 noise,vec3 fragpos, float lightmap, vec3 albedo, float inShadow){ // int nrays = RAY_COUNT; // vec3 intRadiance = vec3(0.0); // vec3 occlude = vec3(0.0); // lighting *= 1.50; // float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength); // for (int i = 0; i < nrays; i++){ // int seed = (frameCounter%40000)*nrays+i; // vec2 ij = fract(R2_samples(seed) + noise ); // vec3 rayDir = TangentToWorld(normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0); // #ifdef HQ_SSGI // vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 50.); // ssr rt // #else // vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 30.); // choc sspt // #endif // float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens // if (rayHit.z < 1.){ // vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; // previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; // previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; // if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) // intRadiance = DoContrast(texture2D(colortex5,previousPosition.xy).rgb) ; // else // intRadiance += lighting*skyLightDir; // make sure ambient light exists but at screen edges when you turn // }else{ // intRadiance += lighting*skyLightDir; // } // } // lighting = intRadiance/nrays; // } void rtGI(inout vec3 lighting, vec3 normal,vec2 noise,vec3 fragpos, float lightmap, vec3 albedo, float inShadow){ int nrays = RAY_COUNT; vec3 intRadiance = vec3(0.0); vec3 occlusion = vec3(0.0); vec3 sunlight =vec3(0); // lighting *= 1.50; float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength); for (int i = 0; i < nrays; i++){ int seed = (frameCounter%40000)*nrays+i; vec2 ij = fract(R2_samples(seed) + noise ); vec3 rayDir = TangentToWorld(normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0); #ifdef HQ_SSGI vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 50.); // ssr rt #else vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 30.); // choc sspt #endif // float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens // vec3 AO = lighting * (normalize(rayHit.z - 1.0) / (1.1-rayDir.y)); if (rayHit.z < 1){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit)+ gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0){ intRadiance = DoContrast(texture2D(colortex5,previousPosition.xy).rgb ) ; } } occlusion = lighting * (normalize(rayHit.z - 1.0)/(1.1-rayDir.y)); // sunlight = lightCol.rgb * min( normalize(rayHit.z - 1.0) / (1.001-dot(rayDir,WsunVec) ) ,0.1) ; // if (rayHit.z < 1.){ // vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; // previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; // previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; // if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0){ // intRadiance += DoContrast(texture2D(colortex5,previousPosition.xy).rgb) ; // }else{ // intRadiance += lighting; // } // // occlude += 1.0; // }else{ // intRadiance += lighting; // } // occlude = (lighting/nrays)*(normalize(rayHit.z - 1.0) / (1.1-rayDir.y)); } lighting = occlusion + intRadiance/nrays; } float GetCloudShadow(vec3 eyePlayerPos){ vec3 p3 = (eyePlayerPos + cameraPosition) - Cloud_Height; vec3 cloudPos = p3*Cloud_Size + WsunVec/abs(WsunVec.y) * ((3250 - 3250*0.35) - p3.y*Cloud_Size) ; float shadow = getCloudDensity(cloudPos, 1); // float shadow = (getCloudDensity(cloudPos, 1) + HighAltitudeClouds(cloudPos)) / 2.0; shadow = clamp(exp(-shadow*6),0.0,1.0); // float timething = (worldTime%24000)*1.0; // float fadestart_evening = clamp(1.0 - clamp(timething-11500.0 ,0.0,2000.0)/1000. ,0.0,1.0); // float fadeend_evening = clamp( clamp(14000.0-timething ,0.0,2000.0)/1000. ,0.0,1.0); // float fadestart_morning = clamp(clamp(23500.0-timething ,0.0,2000.0)/1000. ,0.0,1.0); // float fadeend_morning = clamp(1.0 - clamp(timething-200.0 ,0.0,2000.0)/1000. ,0.0,1.0); // float TheSettingSun = fadeend_morning; return shadow ; } void SubsurfaceScattering(inout float SSS, float Scattering, float Density, float LabDenisty){ #ifdef LabPBR_subsurface_scattering float labcurve = pow(LabDenisty,LabSSS_Curve); SSS = clamp(exp( -(10 - LabDenisty*7) * sqrt(Scattering) ), 0.0, labcurve); if (abs(Scattering-0.1) < 0.0004 ) SSS = labcurve; #else SSS = clamp(exp( -Density * sqrt(Scattering) ), 0.0, 1.0); if (abs(Scattering-0.1) < 0.0004 ) SSS = 1.0; #endif } float densityAtPosSNOW(in vec3 pos){ pos /= 18.; pos.xz *= 0.5; vec3 p = floor(pos); vec3 f = fract(pos); f = (f*f) * (3.-2.*f); vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0); vec2 coord = uv / 512.0; vec2 xy = texture2D(noisetex, coord).yx; return mix(xy.r,xy.g, f.y); } // Emin's and Gri's combined ideas to stop peter panning and light leaking, also has little shadowacne so thats nice // https://www.complementary.dev/reimagined // https://github.com/gri573 void GriAndEminShadowFix( inout vec3 WorldPos, vec3 FlatNormal, float VanillaAO, float SkyLightmap, bool Entities ){ float DistanceOffset = clamp(0.1 + length(WorldPos) / (shadowMapResolution*0.20), 0.0,1.0) ; vec3 Bias = FlatNormal * DistanceOffset; // adjust the bias thingy's strength as it gets farther away. // stop lightleaking if(SkyLightmap < 0.1 && !Entities) { WorldPos += mix(Bias, 0.5 * (0.5 - fract(WorldPos + cameraPosition + FlatNormal*0.01 ) ), VanillaAO) ; }else{ WorldPos += Bias; } } //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// void main() { vec2 texcoord = gl_FragCoord.xy*texelSize; float dirtAmount = Dirt_Amount; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / pi; vec2 tempOffset=TAA_Offset; #ifdef AEROCHROME_MODE totEpsilon *= 10.0; scatterCoef *= 0.1; #endif float noise = blueNoise(); float z0 = texture2D(depthtex0,texcoord).x; float z = texture2D(depthtex1,texcoord).x; vec3 fragpos = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z)); vec3 p3 = mat3(gbufferModelViewInverse) * fragpos; vec3 np3 = normVec(p3); p3 += gbufferModelViewInverse[3].xyz; float iswaterstuff = texture2D(colortex7,texcoord).a ; bool iswater = iswaterstuff > 0.99; vec4 SpecularTex = texture2D(colortex8,texcoord); vec4 data = texture2D(colortex1,texcoord); // terraom vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); vec4 dataUnpacked2 = vec4(decodeVec2(data.z),decodeVec2(data.w)); vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x)); vec4 translucentCol = texture2D(colortex13,texcoord); // translucents vec3 normal = decode(dataUnpacked0.yw); vec4 normalAndAO = texture2D(colortex15,texcoord); float vanilla_AO = normalAndAO.a; normalAndAO.a = clamp(pow(normalAndAO.a*5,4),0,1); vec3 FlatNormals = normalAndAO.rgb * 2.0 - 1.0; vec3 geometryNormal = normalize(cross(dFdx(p3), dFdy(p3))); #ifdef Horrible_slope_normals vec3 slope_normal = normalize(clamp(normal, geometryNormal*2.0 - 1.0,geometryNormal*2.0 + 1.0)); #else vec3 slope_normal = normal; #endif vec2 lightmap = dataUnpacked1.yz; bool translucent = abs(dataUnpacked1.w-0.5) <0.01; // Strong translucency bool translucent2 = abs(dataUnpacked1.w-0.6) <0.01; // Weak translucency bool translucent3 = abs(dataUnpacked1.w-0.55) <0.01; // all blocks bool translucent4 = abs(dataUnpacked1.w-0.65) <0.01; // Weak translucency bool entities = abs(dataUnpacked1.w-0.45) <0.01; bool hand = abs(dataUnpacked1.w-0.75) < 0.01; bool blocklights = abs(dataUnpacked1.w-0.8) <0.01; vec3 filtered = vec3(1.412,1.0,0.0); if (!hand) filtered = texture2D(colortex3,texcoord).rgb; float Diffuse_final = 1.0; vec3 ambientCoefs = slope_normal/dot(abs(slope_normal),vec3(1.)); float cloudShadow = 1.0; vec3 color = vec3(0.0); vec3 skyTEX = skyFromTex(np3,colortex4)/150. ; float lightleakfix = clamp(eyeBrightness.y/240.0 + lightmap.y,0.0,1.0); if ( z >= 1.) { //sky vec4 cloud = texture2D_bicubic(colortex0,texcoord*CLOUDS_QUALITY); color += stars(np3); #ifndef ambientLight_only // #ifdef Allow_Vanilla_sky // vec3 SkyTextured = toLinear(texture2D(colortex12,texcoord).rgb); // color += SkyTextured * (lightCol.a == 1 ? lightCol.rgb : 0.75 + blackbody2(Moon_temp)) * sqrt(luma(SkyTextured)); // #else color += drawSun(dot(lightCol.a * WsunVec, np3),0, lightCol.rgb/150.,vec3(0.0)) ; // sun color += drawSun(dot(lightCol.a * -WsunVec, np3),0, blackbody2(Moon_temp)/500.,vec3(0.0)); // moon // #endif #endif color *= clamp(normalize(np3-0.02).y*5.0,0.0,1.0); // fade from the approximated base of the cloud plane, so it doesnt peek under it. color += skyTEX; color = color*cloud.a+cloud.rgb; gl_FragData[0].rgb = clamp(fp10Dither(color * 5.0,triangularize(noise)),0.0,65000.); }else{//land ////// ----- direct ----- ////// vec3 Direct_lighting = vec3(1.0); vec3 directLightCol = lightCol.rgb; float NdotL = dot(slope_normal,WsunVec); float diffuseSun = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0); float shading = clamp(1.0 - filtered.b,0.0,1.0); if (abs(filtered.y-0.1) < 0.0004 && !iswater) shading = clamp((lightmap.y-0.85)*25,0,1); float SSS = 0.0; float LabSSS = clamp((-65.0 + SpecularTex.z * 255.0) / 190.0 ,0.0,1.0); float SSS_strength = 0.0; float scattering = 0.0; if (diffuseSun > 0.001) { GriAndEminShadowFix(p3, viewToWorld(FlatNormals), normalAndAO.a, lightmap.y, entities); // p3 += getShadowBias(p3,FlatNormals, diffuseSun, lightmap.y, normalAndAO.a); vec3 projectedShadowPosition = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; //apply distortion float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; //do shadows only if on shadow map if (abs(projectedShadowPosition.x) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.y) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.z) < 6.0){ float diffthresh = 0.0; if(hand && eyeBrightness.y/240. > 0.0) diffthresh = 0.0003; projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5); shading = 0.0; float rdMul = filtered.x*distortFactor*d0*k/shadowMapResolution; for(int i = 0; i < SHADOW_FILTER_SAMPLE_COUNT; i++){ if(hand) noise = 0.0; vec2 offsetS = tapLocation(i,SHADOW_FILTER_SAMPLE_COUNT,1.618,noise,0.0); float weight = 1.0+(i+noise)*rdMul/SHADOW_FILTER_SAMPLE_COUNT*shadowMapResolution; float isShadow = shadow2D(shadow,vec3(projectedShadowPosition + vec3(rdMul*offsetS,-diffthresh*weight))).x; shading += isShadow/SHADOW_FILTER_SAMPLE_COUNT; } } } #ifdef CAVE_LIGHT_LEAK_FIX if (isEyeInWater == 0 || (iswater && isEyeInWater == 1) ) shading = mix(0.0, shading, lightleakfix); #endif #ifdef Sub_surface_scattering #ifdef Variable_Penumbra_Shadows if (translucent) SSS_strength = 3; // strong sss else if (translucent2) SSS_strength = 5; /// weak sss else if (translucent3) SSS_strength = 5; // misc sss else if (translucent4) SSS_strength = 10; // mob sss else SSS_strength = -1; // anything less than zero is no SSS bool hasSSS = SSS_strength > 0.0 || LabSSS > 0.0 ; if(hasSSS) SubsurfaceScattering(SSS, filtered.y, SSS_strength, LabSSS) ; if (isEyeInWater == 0) SSS *= lightleakfix; // light leak fix #endif if (!hand){ if (abs(filtered.y-0.1) < 0.0004 && ( !translucent || !translucent2 || !translucent3 || !translucent4 ) ) SSS = 0.0; #ifndef SCREENSPACE_CONTACT_SHADOWS if (abs(filtered.y-0.1) < 0.0004 && ( translucent || translucent2 || translucent4 ) ) SSS = clamp((lightmap.y-0.87)*25,0,1) * clamp(pow(1+dot(WsunVec,normal),25),0,1); #else vec3 vec = lightCol.a*sunVec; float screenShadow = rayTraceShadow(vec, fragpos, interleaved_gradientNoise()); #ifdef Variable_Penumbra_Shadows shading = min(screenShadow, shading); if (abs(filtered.y-0.1) < 0.0004 && ( translucent || translucent2 ) ) SSS = shading; // #else #endif #endif } #ifdef Variable_Penumbra_Shadows SSS = clamp(SSS, diffuseSun*shading, 1.0); SSS = (phaseg(clamp(dot(np3, WsunVec),0.0,1.0), 0.5) * 10.0 + 1.0 ) * SSS ; #endif #else SSS = 0.0; #endif #ifdef VOLUMETRIC_CLOUDS #ifdef CLOUDS_SHADOWS cloudShadow = GetCloudShadow(p3); shading *= cloudShadow; SSS *= cloudShadow; #endif #endif Diffuse_final = diffuseSun * shading ; ////// ----- indirect ----- ////// vec3 Indirect_lighting = vec3(1.0); // vec3 ambientLight = vec3(0.0); vec3 ambientLight = avgAmbient * 2.0; vec3 custom_lightmap = texture2D(colortex4, (vec2(lightmap.x, pow(lightmap.y,2))*15.0+0.5+vec2(0.0,19.))*texelSize).rgb*8./150./3.; // y = torch custom_lightmap.x = max(custom_lightmap.x, Diffuse_final * 8./150./3. ); // make it so that sunlight color is the same even where ambient light is dark // apply ambient light to the sky lightmap and do adjustments ambientLight = ambientLight * custom_lightmap.x + custom_lightmap.z; if( (isEyeInWater == 1 && !iswater) ) ambientLight = avgAmbient * 8./150./3.; ambientLight *= ambient_brightness; // add torch lightmap to ambientlight and do adjustments vec3 Lightsources = custom_lightmap.y * vec3(TORCH_R,TORCH_G,TORCH_B); if(hand) Lightsources *= 0.15; // if(blocklights) Lightsources *= 0.3; if(custom_lightmap.y > 10.0) Lightsources *= 0.3; // Lightsources *= 0.0; ambientLight += Lightsources; // debug for direct or ambient #ifdef ambientLight_only directLightCol = vec3(0); #endif #ifdef ambientLight_only Indirect_lighting = vec3(0); #endif #if indirect_effect == 0 ambientLight *= 1.0 - exp2(-5 * pow(1-vanilla_AO,3)) ; float skylight = clamp(abs(ambientCoefs.y+1),0.35,2.0) ; ambientLight *= skylight; #endif #if indirect_effect == 1 // ambientLight *= mix(1.0 - exp2(-5 * pow(1-vanilla_AO,2)), 1.0, diffuseSun*shading) ; if (!hand) ssAO(ambientLight, fragpos, 1.0, blueNoise(gl_FragCoord.xy).rg, FlatNormals , texcoord, ambientCoefs, lightmap.xy, diffuseSun*shading ) ; #endif #if indirect_effect == 2 if (!hand) rtAO(ambientLight, slope_normal, blueNoise(gl_FragCoord.xy).rg, fragpos, lightmap.y, diffuseSun*shading); #endif #if indirect_effect == 3 if (!hand) rtGI(ambientLight, slope_normal, blueNoise(gl_FragCoord.xy).rg, fragpos, lightmap.y, (directLightCol/127.0), diffuseSun*shading); #endif #if indirect_effect == 4 if (!hand) ssDO(ambientLight, fragpos, 1.0, blueNoise(gl_FragCoord.xy).rg, FlatNormals, worldToView(slope_normal) , texcoord, ambientCoefs, lightmap.xy, diffuseSun*shading ) ; #endif vec3 waterabsorb_speculars = vec3(1); if ((iswater && isEyeInWater == 0) || (!iswater && isEyeInWater == 1) || iswaterstuff == 1.0){ vec3 fragpos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z0)); float Vdiff = distance(fragpos,fragpos0); float VdotU = np3.y; float estimatedDepth = Vdiff * abs(VdotU); //assuming water plane float estimatedDepth2 = Vdiff * abs(VdotU); //assuming water plane if (isEyeInWater == 1){ Vdiff = length(fragpos); estimatedDepth = clamp((15.5-lightmap.y*16.0)/15.5,0.,1.0); estimatedDepth *= estimatedDepth*estimatedDepth*32.0; #ifndef lightMapDepthEstimation estimatedDepth = max(Water_Top_Layer - (cameraPosition.y+p3.y),0.0); #endif estimatedDepth2 = clamp((15.5-lightmap.y*16.0)/15.5,0.,1.0); estimatedDepth2 *= estimatedDepth2*estimatedDepth2*32.0; } float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane vec3 thething = exp2(-totEpsilon*estimatedSunDepth); float estimatedSunDepth2 = estimatedDepth2/abs(WsunVec.y); //assuming water plane vec3 thething2 = max(exp2(-totEpsilon*estimatedSunDepth2),0.01); // water absorbtion for the sunlight. when this isnt active, the water fog is if (isEyeInWater == 1) directLightCol *= thething*(0.91-pow(1.0-WsunVec.y,5.0)*0.86); // allow the sun specular reflection to have water absorbtion when looking at it from outside the water // waterabsorb_speculars.rgb = (iswater && isEyeInWater == 0) ? waterabsorb_speculars.rgb * thething*(0.91-pow(1.0-WsunVec.y,5.0)*0.86) : waterabsorb_speculars.rgb; waterabsorb_speculars.rgb = waterabsorb_speculars.rgb*thething; // caustics... float Direct_caustics = waterCaustics(mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition, WsunVec); float Ambient_Caustics = waterCaustics(mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition, vec3(0.5, 1.0, 0.5)); // apply caustics to the sunlight directLightCol *= 0.5 + max(pow(Direct_caustics*2,2),0.0); // interpolate between normal ambient light to a different ambient light with caustics and water absorbtion Ambient_Caustics = 0.5 + max(pow(Ambient_Caustics,2),0.0); // vec3 underwater_ambient = max(Ambient_Caustics ,0.0) ; // if( (isEyeInWater == 1 && iswater) || (isEyeInWater == 1 && !iswater) ) Indirect_lighting *= 8./150./3.*0.5; if( isEyeInWater == 1 && !iswater ) Indirect_lighting = Indirect_lighting*thething + Indirect_lighting*Ambient_Caustics*thething2 + Lightsources ; //combine all light sources // Direct_lighting = max(Diffuse_final ,SSS) * (directLightCol/127.0); // gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * albedo; } #ifdef Seasons #ifdef Snowy_Winter float SnowPatches = densityAtPosSNOW(vec3(p3.x,p3.y/48.,p3.z)*250); SnowPatches = 1.0 - clamp( exp(pow(SnowPatches,3.5) * -100.0) ,0,1); SnowPatches *= clamp(sqrt(normal.y),0,1) * clamp(pow(lightmap.y,25)*25,0,1); if(!hand && !iswater){ albedo = mix(albedo, vec3(0.8,0.9,1.0), SnowPatches); SpecularTex.rg = mix(SpecularTex.rg, vec2(1,0.05), SnowPatches); } #endif #endif // do this after water and stuff is done because yea Indirect_lighting = ambientLight; //combine all light sources Direct_lighting = (Diffuse_final + SSS) * (directLightCol/127.0) ; // Direct_lighting = max(Diffuse_final ,SSS) * (directLightCol/127.0) ; gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * albedo; #ifdef Specular_Reflections vec3 fragpos_spec = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0)); vec3 p3_spec = mat3(gbufferModelViewInverse) * fragpos_spec; vec3 np3_spec = normVec(p3_spec); MaterialReflections(texcoord, gl_FragData[0].rgb, SpecularTex.r, SpecularTex.ggg, albedo, WsunVec, lightCol.rgb * waterabsorb_speculars, Diffuse_final , lightmap.y, slope_normal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg, interleaved_gradientNoise()), hand); #endif #ifdef LabPBR_Emissives gl_FragData[0].rgb = SpecularTex.a < 255.0/255.0 ? mix(gl_FragData[0].rgb, albedo * Emissive_Brightness , SpecularTex.a) + Direct_lighting*albedo : gl_FragData[0].rgb; #endif } #ifdef Glass_Tint // glass tint. vec4 glassColor = texture2D(colortex13,texcoord); #ifdef BorderFog float fog = 1.0 - clamp( exp2(-pow(length(fragpos / far),10.)*4.0) ,0.0,1.0); if(z < 1.0 && isEyeInWater == 0 && glassColor.a > 0.0) gl_FragData[0].rgb = mix(gl_FragData[0].rgb, skyTEX * 5.0, fog*lightleakfix ) ; #endif float colorstrength = 0.75; glassColor.rgb *= 5.; if(glassColor.a > 0.0 && !iswater && (iswaterstuff < 0.1 && iswaterstuff > 0.0 )) gl_FragData[0].rgb = gl_FragData[0].rgb*glassColor.rgb + gl_FragData[0].rgb * clamp(pow(1.0-luma(glassColor.rgb),5.),0,1); #endif if (iswater){ vec3 fragpos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z0)); float Vdiff = distance(fragpos,fragpos0); float VdotU = np3.y; float estimatedDepth = Vdiff * abs(VdotU); //assuming water plane float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane float custom_lightmap_T = texture2D(colortex14, texcoord).x; // y = torch vec3 ambientColVol = avgAmbient * 8./150./1.5 * max(custom_lightmap_T,0.0025); vec3 lightColVol = lightCol.rgb * 8./127. * max(lightleakfix,0.0); if (isEyeInWater == 0) waterVolumetrics(gl_FragData[0].rgb, fragpos0, fragpos, estimatedDepth, estimatedSunDepth, Vdiff, noise, totEpsilon, scatterCoef, ambientColVol, lightColVol, dot(np3, WsunVec)); } /* RENDERTARGETS:3 */ }