// #version 120 #extension GL_EXT_gpu_shader4 : enable varying vec4 lmtexcoord; varying vec4 color; varying vec4 normalMat; varying vec3 binormal; uniform sampler2D normals; varying vec3 tangent; varying vec4 tangent_other; varying vec3 viewVector; varying float dist; #include "lib/settings.glsl" #include "/lib/res_params.glsl" uniform sampler2D texture; uniform sampler2D noisetex; uniform sampler2DShadow shadow; uniform sampler2D gaux2; uniform sampler2D gaux1; uniform sampler2D depthtex1; uniform vec4 lightCol; uniform float nightVision; uniform vec3 sunVec; uniform float frameTimeCounter; uniform float lightSign; uniform float near; uniform float far; uniform float moonIntensity; uniform float sunIntensity; uniform vec3 sunColor; uniform vec3 nsunColor; uniform vec3 upVec; uniform float sunElevation; uniform float fogAmount; uniform vec2 texelSize; uniform float rainStrength; uniform float skyIntensityNight; uniform float skyIntensity; flat varying vec3 WsunVec; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; uniform int framemod8; uniform sampler2D specular; uniform int frameCounter; uniform int isEyeInWater; #include "lib/Shadow_Params.glsl" #include "lib/color_transforms.glsl" #include "lib/projections.glsl" #include "lib/sky_gradient.glsl" #include "lib/waterBump.glsl" #include "lib/clouds.glsl" #include "lib/stars.glsl" #include "lib/volumetricClouds.glsl" const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), vec2(-1.,3.)/8., vec2(5.0,1.)/8., vec2(-3,-5.)/8., vec2(-5.,5.)/8., vec2(-7.,-1.)/8., vec2(3,7.)/8., vec2(7.,-7.)/8.); float interleaved_gradientNoise(float temporal){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+temporal); return noise; } vec3 srgbToLinear2(vec3 srgb){ return mix( srgb / 12.92, pow(.947867 * srgb + .0521327, vec3(2.4) ), step( .04045, srgb ) ); } vec3 blackbody2(float Temp) { float t = pow(Temp, -1.5); float lt = log(Temp); vec3 col = vec3(0.0); col.x = 220000.0 * t + 0.58039215686; col.y = 0.39231372549 * lt - 2.44549019608; col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y; col.z = 0.76078431372 * lt - 5.68078431373; col = clamp(col,0.0,1.0); col = Temp < 1000. ? col * Temp * 0.001 : col; return srgbToLinear2(col); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 nvec3(vec4 pos){ return pos.xyz/pos.w; } vec4 nvec4(vec3 pos){ return vec4(pos.xyz, 1.0); } vec3 rayTrace(vec3 dir,vec3 position,float dither, float fresnel, bool inwater){ float quality = mix(15,SSR_STEPS,fresnel); vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z); vec3 stepv = direction * mult / quality*vec3(RENDER_SCALE,1.0); vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither; float minZ = clipPosition.z; float maxZ = spos.z+stepv.z*0.5; spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE; float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases for (int i = 0; i <= int(quality); i++) { #ifdef USE_QUARTER_RES_DEPTH // decode depth buffer float sp = sqrt(texelFetch2D(gaux1,ivec2(spos.xy/texelSize/4),0).w/65000.0); sp = invLinZ(sp); if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp); #else float sp = texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).r; if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp); #endif spos += stepv; //small bias minZ = maxZ-(0.0001/dist)/ld(spos.z); if(inwater) minZ = maxZ-0.0004/ld(spos.z); maxZ += stepv.z; } return vec3(1.1); } float facos(float sx){ float x = clamp(abs( sx ),0.,1.); float a = sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 ); return sx > 0. ? a : pi - a; } float bayer2(vec2 a){ a = floor(a); return fract(dot(a,vec2(0.5,a.y*0.75))); } float cdist(vec2 coord) { return max(abs(coord.s-0.5),abs(coord.t-0.5))*2.0; } #define PW_DEPTH 0.0 //[0.5 1.0 1.5 2.0 2.5 3.0] #define PW_POINTS 1 //[2 4 6 8 16 32] #define bayer4(a) (bayer2( .5*(a))*.25+bayer2(a)) #define bayer8(a) (bayer4( .5*(a))*.25+bayer2(a)) #define bayer16(a) (bayer8( .5*(a))*.25+bayer2(a)) #define bayer32(a) (bayer16(.5*(a))*.25+bayer2(a)) #define bayer64(a) (bayer32(.5*(a))*.25+bayer2(a)) #define bayer128(a) fract(bayer64(.5*(a))*.25+bayer2(a)) vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) { float waveZ = mix(20.0,0.25,iswater); float waveM = mix(0.0,4.0,iswater); vec3 parallaxPos = posxz; vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH; float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) ; parallaxPos.xz += waterHeight * vec; return parallaxPos; } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort) { float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * nbRot * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } //Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } vec4 hash44(vec4 p4) { p4 = fract(p4 * vec4(.1031, .1030, .0973, .1099)); p4 += dot(p4, p4.wzxy+33.33); return fract((p4.xxyz+p4.yzzw)*p4.zywx); } vec3 TangentToWorld(vec3 N, vec3 H) { vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } float GGX (vec3 n, vec3 v, vec3 l, float r, float F0) { r*=r;r*=r; vec3 h = l + v; float hn = inversesqrt(dot(h, h)); float dotLH = clamp(dot(h,l)*hn,0.,1.); float dotNH = clamp(dot(h,n)*hn,0.,1.); float dotNL = clamp(dot(n,l),0.,1.); float dotNHsq = dotNH*dotNH; float denom = dotNHsq * r - dotNHsq + 1.; float D = r / (3.141592653589793 * denom * denom); float F = F0 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH); float k2 = .25 * r; return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2); } vec3 applyBump(mat3 tbnMatrix, vec3 bump){ float bumpmult = 1.0; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); return normalize(bump*tbnMatrix); } #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float triangularize(float dither) { float center = dither*2.0-1.0; dither = center*inversesqrt(abs(center)); return clamp(dither-fsign(center),0.0,1.0); } vec3 fp10Dither(vec3 color,float dither){ const vec3 mantissaBits = vec3(6.,6.,5.); vec3 exponent = floor(log2(color)); return color + dither*exp2(-mantissaBits)*exp2(exponent); } float R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ; } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy + (frameCounter%40000); // vec2 coord = gl_FragCoord.xy + frameTimeCounter; // vec2 coord = gl_FragCoord.xy; float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) ); return noise ; } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } float encodeVec2(float x,float y){ return encodeVec2(vec2(x,y)); } vec3 viewToWorld(vec3 viewPosition) { vec4 pos; pos.xyz = viewPosition; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } vec4 encode (vec3 n, vec2 lightmaps){ n.xy = n.xy / dot(abs(n), vec3(1.0)); n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy; vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0); return vec4(encn,vec2(lightmaps.x,lightmaps.y)); } float square(float x){ return x*x; } float g(float NdotL, float roughness){ float alpha = square(max(roughness, 0.02)); return 2.0 * NdotL / (NdotL + sqrt(square(alpha) + (1.0 - square(alpha)) * square(NdotL))); } float gSimple(float dp, float roughness){ float k = roughness + 1; k *= k/8.0; return dp / (dp * (1.0-k) + k); } vec3 GGX2(vec3 n, vec3 v, vec3 l, float r, vec3 F0,float fresnel) { float roughness = r; float alpha = square(roughness) + 1e-4; // when roughness is zero it fucks up vec3 h = normalize(l + v) * mix(1.000, 1.0025, pow(fresnel,2) ); float dotLH = clamp(dot(h,l),0.,1.); float dotNH = clamp(dot(h,n),0.,1.); float dotNL = clamp(dot(n,l),0.,1.); float dotNV = clamp(dot(n,v),0.,1.); float dotVH = clamp(dot(h,v),0.,1.); float D = alpha / (0.0541592653589793*square(square(dotNH) * (alpha - 1.0) + 1.0)); float G = gSimple(dotNV, roughness) * gSimple(dotNL, roughness); vec3 F = F0 + (1. - F0) * exp2((-5.55473*dotVH-6.98316)*dotVH); return dotNL * F * (G * D / (4 * dotNV * dotNL + 1e-7)); } //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// /* RENDERTARGETS:2,7,1,11,13,14 */ void main() { if (gl_FragCoord.x * texelSize.x < RENDER_SCALE.x && gl_FragCoord.y * texelSize.y < RENDER_SCALE.y ) { vec2 tempOffset=offsets[framemod8]; float iswater = normalMat.w; vec3 fragC = gl_FragCoord.xyz*vec3(texelSize,1.0); vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0)); gl_FragData[0] = texture2D(texture, lmtexcoord.xy,-5)*color; // float avgBlockLum = luma(texture2DLod(texture, lmtexcoord.xy,128).rgb*color.rgb); // gl_FragData[0].rgb = clamp((gl_FragData[0].rgb)*pow(avgBlockLum,-0.33)*0.85,0.0,1.0); vec3 albedo = toLinear(gl_FragData[0].rgb); #ifndef Vanilla_like_water if (iswater > 0.4) { albedo = vec3(1.0); gl_FragData[0] = vec4(0.42,0.6,0.7,0.7); } if (iswater > 0.9) { gl_FragData[0] = vec4(vec3(0.0),1./255.); } #endif #ifdef Vanilla_like_water if (iswater > 0.5) { gl_FragData[0].a = luma(albedo.rgb); albedo = color.rgb; } #endif gl_FragData[4] = vec4(albedo, gl_FragData[0].a); vec3 normal = normalMat.xyz; vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; mat3 tbnMatrix = mat3(tangent.x, binormal.x, normal.x, tangent.y, binormal.y, normal.y, tangent.z, binormal.z, normal.z); if (iswater > 0.4){ float bumpmult = 1.; vec3 posxz = p3+cameraPosition; posxz.xz-=posxz.y; vec3 bump; posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*fragpos)); bump = normalize(getWaveHeight(posxz.xz,iswater)); bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); normal = normalize(bump * tbnMatrix); }else { vec3 normalTex = texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).rgb; normalTex.xy = normalTex.xy*2.0-1.0; normalTex.z = clamp(sqrt(1.0 - dot(normalTex.xy, normalTex.xy)),0.0,1.0); normal = applyBump(tbnMatrix,normalTex); } vec4 data0 = vec4(1); vec4 data1 = clamp( encode(viewToWorld(normal), lmtexcoord.zw),0.0,1.0); gl_FragData[3] = vec4(encodeVec2(data0.x,data1.x), encodeVec2(data0.y,data1.y), encodeVec2(data0.z,data1.z), encodeVec2(data1.w,data0.w)); gl_FragData[5] = vec4(encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a)); float NdotL = lightSign*dot(normal,sunVec); float NdotU = dot(upVec,normal); float diffuseSun = clamp(NdotL,0.0f,1.0f); diffuseSun = clamp((-15 + diffuseSun*255.0) / 240.0 ,0.0,1.0); vec3 direct = texelFetch2D(gaux1,ivec2(6,37),0).rgb/127.0; #ifdef ambientLight_only direct = vec3(0); #endif float shading = 1.0; float cloudShadow = 1.0; //compute shadows only if not backface if (diffuseSun > 0.001) { vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 projectedShadowPosition = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; //apply distortion float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; //do shadows only if on shadow map if (abs(projectedShadowPosition.x) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.y) < 1.0-1.5/shadowMapResolution){ const float threshMul = max(2048.0/shadowMapResolution*shadowDistance/128.0,0.95); float distortThresh = (sqrt(1.0-diffuseSun*diffuseSun)/diffuseSun+0.7)/distortFactor; float diffthresh = distortThresh/6000.0*threshMul; projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5,0.5,0.5); shading = 0.0; float noise = blueNoise(); float rdMul = 4.0/shadowMapResolution; for(int i = 0; i < 9; i++){ vec2 offsetS = tapLocation(i,9, 1.618,noise,0.0); float weight = 1.0+(i+noise)*rdMul/9.0*shadowMapResolution; shading += shadow2D(shadow,vec3(projectedShadowPosition + vec3(rdMul*offsetS,-diffthresh*weight))).x/9.0; } direct *= shading; } #ifdef VOLUMETRIC_CLOUDS #ifdef CLOUDS_SHADOWS vec3 campos = (p3 + cameraPosition)-319 ; // get cloud position vec3 cloudPos = campos*Cloud_Size + WsunVec/abs(WsunVec.y) * (2250 - campos.y*Cloud_Size); // get the cloud density and apply it cloudShadow = getCloudDensity(cloudPos, 1); // cloudShadow = exp(-cloudShadow*sqrt(cloudDensity)*25); cloudShadow = clamp(exp(-cloudShadow*10),0,1); // make these turn to zero when occluded by the cloud shadow direct *= cloudShadow; #endif #endif } vec3 ambientLight = (texture2D(gaux1,(lmtexcoord.zw*15.+0.5)*texelSize).rgb * 2.0) * 8./150./3.; direct *= (iswater > 0.9 ? 0.2: 1.0)*diffuseSun*lmtexcoord.w; vec3 directLight = direct; vec3 color = vec3(0); color += ambientLight ; color += directLight; #ifdef Glass_Tint float alphashit = min(pow(gl_FragData[0].a,2.0),1.0); color *= alphashit; #endif color *= albedo; vec2 specularstuff = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg; specularstuff = iswater > 0.0 && specularstuff.r > 0.0 && specularstuff.g < 0.9 ? specularstuff : vec2(1.0,0.02); if (iswater > 0.0){ float roughness = pow(1.0-specularstuff.r,2.0); float f0 = 0; float F0 = f0; vec3 reflectedVector = reflect(normalize(fragpos), normal); float normalDotEye = dot(normal, normalize(fragpos)); float fresnel = pow(clamp(1.0 + normalDotEye,0.0,1.0), 5.0); // snells window looking thing if(isEyeInWater == 1 && iswater > 0.99) fresnel = clamp(pow(1.66 + normalDotEye,25),0.02,1.0); fresnel = mix(F0, 1.0, fresnel); float indoors = clamp((lmtexcoord.w-0.6)*5.0, 0.0,1.0); vec3 wrefl = mat3(gbufferModelViewInverse)*reflectedVector; vec3 sky_c = skyCloudsFromTex(wrefl,gaux1).rgb / 150. * 5. ; sky_c.rgb *= indoors; float visibilityFactor = clamp(exp2((pow(roughness,3.0) / F0) * -4),0,1); sky_c = mix(sky_c,color,(1.0-indoors)) ; vec4 reflection = vec4(0.); #ifdef SCREENSPACE_REFLECTIONS vec3 rtPos = rayTrace(reflectedVector,fragpos.xyz, interleaved_gradientNoise(), fresnel, isEyeInWater == 1); if (rtPos.z <1.){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) { reflection.a = 1.0; reflection.rgb = texture2D(gaux2,previousPosition.xy).rgb; } } #endif if(isEyeInWater == 1 ) sky_c.rgb = color.rgb*lmtexcoord.w; reflection.rgb = mix(sky_c.rgb, reflection.rgb, reflection.a); vec3 sunSpec = shading*directLight * GGX2(normal, -normalize(fragpos), lightSign*sunVec, roughness, vec3(f0), fresnel) ; sunSpec *= max(cloudShadow-0.5,0.0); vec3 reflected = reflection.rgb*fresnel + sunSpec ; // reflected = vec3(0); float alpha0 = gl_FragData[0].a; // //correct alpha channel with fresnel gl_FragData[0].a = -gl_FragData[0].a*fresnel+gl_FragData[0].a+fresnel; gl_FragData[0].rgb = clamp(color/gl_FragData[0].a*alpha0*(1.0-fresnel)*0.1+reflected/gl_FragData[0].a*0.1,0.0,65100.0); if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.); #ifdef BorderFog float fog = 1.0 - clamp( exp2(-pow(length(fragpos / far),10.)*3.0) ,0.0,1.0); gl_FragData[0].a = mix(gl_FragData[0].a, 0.0, fog); #endif } else gl_FragData[0].rgb = color*.1; gl_FragData[1] = vec4(albedo,iswater); } }