#version 120 //Render sky, volumetric clouds, direct lighting #extension GL_EXT_gpu_shader4 : enable #define SCREENSPACE_CONTACT_SHADOWS //Raymarch towards the sun in screen-space, in order to cast shadows outside of the shadow map or at the contact of objects. Can get really expensive at high resolutions. #define SHADOW_FILTER_SAMPLE_COUNT 9 // Number of samples used to filter the actual shadows [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 ] #define CAVE_LIGHT_LEAK_FIX // Hackish way to remove sunlight incorrectly leaking into the caves. Can inacurrately remove shadows in some places #define CLOUDS_SHADOWS #define CLOUDS_SHADOWS_STRENGTH 1.0 //[0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0] #define CLOUDS_QUALITY 0.5 //[0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0] #define SSAO //It is also recommended to reduce the ambientOcclusionLevel value with this enabled #define SSAO_SAMPLES 7 //[4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32] #define TORCH_R 1.0 // [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0] #define TORCH_G 0.75 // [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0] #define TORCH_B 0.5 // [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0] #define indirect_effect 1 // Choose what effect is applied to indirect light. [0 1 2 3] #define AO_Strength 0.8 // strength of shadowed areas [0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 ] #define GI_Strength 1.0 // strength of bounced light areas [1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 ] // #define Glass_Tint // multiply the background through glass by the color of the glass for a strong tint. // #define HQ_SSGI // #define end_shadows //////////// misc settings // #define WhiteWorld // THIS IS A DEBUG VIEW. uses to see AO easier. used to see fake GI better (green light) // #define LabPBR_Emissives #define Emissive_Brightness 10.0 // [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 15. 20. 25. 30. 35. 40. 45. 50. 100.] #define Emissive_Curve 2.0 // yes i blatantly copied kappa here. [1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 ] #define MIN_LIGHT_AMOUNT 1.0 //[0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0] const bool shadowHardwareFiltering = true; varying vec2 texcoord; uniform float nightVision; flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon) flat varying vec3 ambientUp; flat varying vec3 ambientLeft; flat varying vec3 ambientRight; flat varying vec3 ambientB; flat varying vec3 ambientF; flat varying vec3 ambientDown; flat varying vec3 avgAmbient; // flat varying vec3 WsunVec; flat varying vec2 TAA_Offset; flat varying float tempOffsets; uniform sampler2D colortex0;//clouds uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16 uniform sampler2D colortex3; // uniform sampler2D colortex4;//Skybox uniform sampler2D colortex5; uniform sampler2D colortex6;//Skybox uniform sampler2D colortex7; uniform sampler2D colortex13; uniform sampler2D colortex8; uniform sampler2D depthtex1;//depth uniform sampler2D depthtex0;//depth uniform sampler2D noisetex;//depth uniform float isWastes; uniform float isWarpedForest; uniform float isCrimsonForest; uniform float isSoulValley; uniform float isBasaltDelta; uniform int heldBlockLightValue; uniform int frameCounter; uniform int isEyeInWater; uniform mat4 shadowModelViewInverse; uniform mat4 shadowProjectionInverse; uniform float far; uniform float near; uniform float frameTimeCounter; uniform float rainStrength; uniform mat4 gbufferProjection; uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferModelViewInverse; uniform mat4 gbufferPreviousModelView; uniform mat4 gbufferPreviousProjection; uniform vec3 previousCameraPosition; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform mat4 gbufferModelView; uniform vec2 texelSize; uniform float viewWidth; uniform float viewHeight; uniform float aspectRatio; uniform vec3 cameraPosition; // uniform int framemod8; uniform vec3 sunVec; uniform ivec2 eyeBrightnessSmooth; #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } #include "lib/waterOptions.glsl" #include "lib/color_transforms.glsl" #include "lib/sky_gradient.glsl" #include "lib/stars.glsl" #include "lib/volumetricClouds.glsl" #include "lib/waterBump.glsl" float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 ld(vec3 dist) { return (2.0 * near) / (far + near - dist * (far - near)); } #include "lib/specular.glsl" vec3 normVec (vec3 vec){ return vec*inversesqrt(dot(vec,vec)); } float lengthVec (vec3 vec){ return sqrt(dot(vec,vec)); } #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float triangularize(float dither) { float center = dither*2.0-1.0; dither = center*inversesqrt(abs(center)); return clamp(dither-fsign(center),0.0,1.0); } float interleaved_gradientNoise(float temp){ return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+temp); } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)); return noise; } vec3 fp10Dither(vec3 color,float dither){ const vec3 mantissaBits = vec3(6.,6.,5.); vec3 exponent = floor(log2(color)); return color + dither*exp2(-mantissaBits)*exp2(exponent); } vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float facos(float sx){ float x = clamp(abs( sx ),0.,1.); return sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 ); } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } vec3 decode (vec2 encn){ vec3 n = vec3(0.0); encn = encn * 2.0 - 1.0; n.xy = abs(encn); n.z = 1.0 - n.x - n.y; n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn; return clamp(normalize(n.xyz),-1.0,1.0); } vec2 decodeVec2(float a){ const vec2 constant1 = 65535. / vec2( 256., 65536.); const float constant2 = 256. / 255.; return fract( a * constant1 ) * constant2 ; } // float linZ(float depth) { // return (2.0 * near) / (far + near - depth * (far - near)); // // l = (2*n)/(f+n-d(f-n)) // // f+n-d(f-n) = 2n/l // // -d(f-n) = ((2n/l)-f-n) // // d = -((2n/l)-f-n)/(f-n) // } // float invLinZ (float lindepth){ // return -((2.0*near/lindepth)-far-near)/(far-near); // } // vec3 toClipSpace3(vec3 viewSpacePosition) { // return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5; // } float bayer2(vec2 a){ a = floor(a); return fract(dot(a,vec2(0.5,a.y*0.75))); } #define bayer4(a) (bayer2( .5*(a))*.25+bayer2(a)) #define bayer8(a) (bayer4( .5*(a))*.25+bayer2(a)) #define bayer16(a) (bayer8( .5*(a))*.25+bayer2(a)) #define bayer32(a) (bayer16(.5*(a))*.25+bayer2(a)) #define bayer64(a) (bayer32(.5*(a))*.25+bayer2(a)) #define bayer128(a) fract(bayer64(.5*(a))*.25+bayer2(a)+tempOffsets) vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort) { float alpha0 = sampleNumber/nb; float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * 4.0 * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } vec3 BilateralFiltering(sampler2D tex, sampler2D depth,vec2 coord,float frDepth,float maxZ){ vec4 sampled = vec4(texelFetch2D(tex,ivec2(coord),0).rgb,1.0); return vec3(sampled.x,sampled.yz/sampled.w); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } vec4 blueNoise(vec2 coord){ return texelFetch2D(colortex6, ivec2(coord )%512 , 0); } float R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y); } vec3 toShadowSpaceProjected(vec3 p3){ p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz; p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz; return p3; } vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0) { float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb))); float angle = alpha * (nbRot * 6.28) + spinAngle*6.28; float ssR = alpha; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } // void ssAO(inout vec3 lighting,vec3 fragpos,float mulfov, vec2 noise, vec3 normal, float lightmap){ // ivec2 pos = ivec2(gl_FragCoord.xy); // const float tan70 = tan(70.*3.14/240.); // float mulfov2 = gbufferProjection[1][1]/tan70; // float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*1.412/50.0; // float rd = mulfov2 * 0.04 ; // //pre-rotate direction // float n = 0.0; // float occlusion = 0.0; // vec2 acc = -(TAA_Offset*(texelSize/2)) ; // int seed = (frameCounter%40000)*2 + frameCounter; // vec2 ij = fract(R2_samples(seed) + noise.rg ); // vec2 v = ij; // for (int j = 0; j < 7 ;j++) { // vec2 sp = tapLocation(j,v.x,7,1.682,v.y); // vec2 sampleOffset = sp*rd ; // ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)); // if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) { // vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x)); // vec3 vec = t0.xyz - fragpos; // float dsquared = dot(vec,vec); // if (dsquared > 1e-5){ // if (dsquared < maxR2){ // float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal) ),0.,1.); // occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0); // } // n += 1.0 ; // } // } // } // occlusion *= mix(2.25,0.0,clamp(pow(lightmap,2),0,1)); // occlusion = max(1.0 - occlusion/n, 0.0); // lighting = lighting * occlusion; // } void ssAO(inout vec3 lighting,vec3 fragpos,float mulfov, vec2 noise, vec3 normal, vec2 texcoord, vec3 ambientCoefs, vec2 lightmap){ float skyLightDir = dot(WsunVec, ambientCoefs); // float skyLightDir = dot(normal, sunVec); ivec2 pos = ivec2(gl_FragCoord.xy); const float tan70 = tan(70.*3.14/240.); float mulfov2 = gbufferProjection[1][1]/tan70; float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*1.412/50.0; float rd = mulfov2 * 0.04 ; //pre-rotate direction float n = 0.0; float occlusion = 0.0; vec2 acc = -(TAA_Offset*(texelSize/2)) ; int seed = (frameCounter%40000)*2 + frameCounter; vec2 ij = fract(R2_samples(seed) + noise.rg ); // vec2 ij = fract(R2_samples(-1) + 0.5 * blueNoise() ); vec2 v = ij; for (int j = 0; j < 7 ;j++) { vec2 sp = tapLocation(j,v.x,7,1.682,v.y) ; vec2 sampleOffset = sp*rd ; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) ); vec3 vec = t0.xyz - fragpos; float dsquared = dot(vec,vec); if (dsquared > 1e-5){ if (dsquared < maxR2){ float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal) ),0.,1.); occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0); } n += 1.0 ; } } } // occlusion += max(skyLightDir, 0.0); occlusion *= mix(2.25,0.0,clamp(pow(lightmap.x,2),0,1)); occlusion = max(1.0 - occlusion/n, 0.0); lighting *=clamp(0.75+ambientCoefs.y*0.5,0.0,1.0); lighting *= max(occlusion + luma(normal/dot(abs(normal),vec3(1))* mat3(gbufferModelView)), occlusion); // multiply ambient light by this effect // lighting *= occlusion; } vec3 cosineHemisphereSample(vec2 Xi, float roughness) { float r = sqrt(Xi.x); float theta = 2.0 * 3.14159265359 * Xi.y; float x = r * cos(theta); float y = r * sin(theta); return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.))); } vec3 TangentToWorld(vec3 N, vec3 H, float roughness) { vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){ float stepSize = stepsizes; int maxSteps = 12; vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ? (-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far; vec3 end = toClipSpace3(position+dir*rayLength) ; vec3 direction = end-clipPosition ; //convert to clip space float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize; //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0; vec3 stepv = direction/len; int iterations = min(int(min(len, mult*len)-2), maxSteps); //Do one iteration for closest texel (good contact shadows) vec3 spos = clipPosition ; spos.xy += TAA_Offset*texelSize*0.5; spos += stepv/(stepSize/2); for(int i = 0; i < iterations; i++){ spos += stepv*noise; float sp=texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).x; float currZ = (spos.z); if( sp < currZ) { // float dist = abs(sp-currZ)/currZ; return vec3(spos.xy, invLinZ(sp)); } } return vec3(1.1); } void rtAO(inout vec3 lighting, vec3 normal, vec2 noise, vec3 fragpos){ int nrays = 4; float occlude = 0.0; for (int i = 0; i < nrays; i++){ int seed = (frameCounter%40000)*nrays+i; vec2 ij = fract(R2_samples(seed) + noise ); vec3 rayDir = TangentToWorld( normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0) ; vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 12.); // choc sspt float skyLightDir = rayDir.y < 0.0 ? 1.0 : 1.0 ; // the positons where the occlusion happens if (rayHit.z > 1.0) occlude += skyLightDir; } lighting *= occlude/nrays; } float rayTraceShadow(vec3 dir,vec3 position,float dither){ const float quality = 32.; vec3 clipPosition = toClipSpace3(position); //prevents the ray from going behind the camera float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.) ; vec3 direction = toClipSpace3(position+dir*rayLength)-clipPosition; //convert to clip space direction.xyz = direction.xyz/max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y); //fixed step size vec3 stepv = direction *3. * clamp(MC_RENDER_QUALITY,1.,2.0); vec3 spos = clipPosition; spos.xy += (TAA_Offset*(texelSize/4)) ; spos += stepv*dither; for (int i = 0; i < int(quality); i++) { spos += stepv ; spos += stepv * dither; float sp = texture2D(depthtex1,spos.xy).x; if( sp < spos.z) { float dist = abs(linZ(sp)-linZ(spos.z))/linZ(spos.z); if (dist < 0.1 ) return 0.0; } } return 1.0; } void main() { float dirtAmount = Dirt_Amount; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / pi; float z0 = texture2D(depthtex0,texcoord).x; float z = texture2D(depthtex1,texcoord).x; vec2 tempOffset=TAA_Offset; // float noise = blueNoise(); vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z)); vec3 p3 = mat3(gbufferModelViewInverse) * fragpos; vec3 np3 = normVec(p3); vec4 SpecularTex = texture2D(colortex8,texcoord); // for a thing vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float dL = length(dVWorld); vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition; progressW = gbufferModelViewInverse[3].xyz+cameraPosition + dVWorld; p3 += gbufferModelViewInverse[3].xyz; bool iswater = texture2D(colortex7,texcoord).a > 0.99; vec4 data = texture2D(colortex1,texcoord); vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x)); vec3 normal = mat3(gbufferModelViewInverse) * worldToView(decode(dataUnpacked0.yw)); vec2 lightmap = dataUnpacked1.yz; bool translucent = abs(dataUnpacked1.w-0.5) <0.01; bool hand = abs(dataUnpacked1.w-0.75) <0.01; bool blocklights = abs(dataUnpacked1.w-0.8) <0.01; float LightDir = clamp((-15 + max(dot(normal, WsunVec),0.0)*255.0) / 240.0 ,0.0,1.0); vec3 lightSource = normalize(WsunVec); vec3 viewspace_sunvec = mat3(gbufferModelView) * lightSource; float SdotV = dot(normalize(viewspace_sunvec), normalize(fragpos)); float lightning_shine = clamp(phaseg(SdotV, 0.8),0,3); vec3 ambientCoefs = normal/dot(abs(normal),vec3(1.)); #ifdef WhiteWorld albedo = vec3(1.0); #endif if ( z >= 1.) { vec3 color = vec3(1.0,0.75,0.9)/4000.0*150.0*0.1; vec4 cloud = texture2D_bicubic(colortex0,texcoord*CLOUDS_QUALITY); color = color*cloud.a+cloud.rgb; gl_FragData[0].rgb = clamp(fp10Dither(color*8./3. * (1.0-rainStrength*0.4),triangularize(blueNoise())),0.0,65000.); }else{ ////// ----- indirect ----- ////// vec3 custom_lightmap = texture2D(colortex4, (vec2(lightmap.x, pow(lightmap.y,2))*15.0+0.5+vec2(0.0,19.))*texelSize).rgb*8./150./3.; // y = torch // vec3 ambientLight = vec3(1.0) / 30; vec3 ambientLight = gl_Fog.color.rgb * 0.2; // lightmap.x = trpData.a < 255.0/255.0 ? mix( trpData.a, lightmap.x ,pow(trpData.a,Emissive_Curve)): lightmap.x ; // vec3 Lightsources = (vec3(1.0)/5) * (pow(lightmap.x,2.0) + pow(lightmap.x,10.0)); vec3 Lightsources = custom_lightmap.y * vec3(TORCH_R,TORCH_G,TORCH_B) * 0.5; if(hand) Lightsources *= 0.15; if(blocklights) Lightsources *= 0.3; if(custom_lightmap.y > 10.) Lightsources *= 0.25; //apply a curve for the torch light so it doesnt mix with lab emissive colors too much #ifdef LabPBR_Emissives if(blocklights && (SpecularTex.a > 0.0 && SpecularTex.a < 1.0)) Lightsources = mix(vec3(0.0), Lightsources, SpecularTex.a); #endif ambientLight += Lightsources; #if indirect_effect == 1 if (!hand) ssAO(ambientLight, fragpos, 1.0, blueNoise(gl_FragCoord.xy).rg, worldToView(decode(dataUnpacked0.yw)), texcoord, ambientCoefs, lightmap.xy ) ; #endif // #if indirect_effect == 2 // if (!hand ) rtAO(ambientLight, normal, blueNoise(gl_FragCoord.xy).rg, fragpos); // #endif // #if indirect_effect == 3 // if (!hand) rtGI(ambientLight, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, 1, albedo); // #endif vec3 Indirect_lighting = ambientLight; ////// ----- direct ----- ////// float screenShadow = 1; vec3 Direct_lighting = SunCol * (lightning_shine*10) * LightDir; #ifdef end_shadows vec3 vec = -lightCol.a*viewspace_sunvec; screenShadow = rayTraceShadow(vec, fragpos, interleaved_gradientNoise()); if (!hand) Direct_lighting *= screenShadow; #endif ////// ----- finalize ----- ////// gl_FragData[0].rgb = (Indirect_lighting+Direct_lighting) * albedo ; #ifdef LabPBR_Emissives gl_FragData[0].rgb = SpecularTex.a < 255.0/255.0 ? mix(gl_FragData[0].rgb, albedo * Emissive_Brightness , SpecularTex.a): gl_FragData[0].rgb; #endif // do this after water and stuff is done because yea #ifdef Specular_Reflections MaterialReflections(gl_FragData[0].rgb, SpecularTex.r, SpecularTex.ggg, albedo, WsunVec, SunCol, screenShadow*LightDir , 0.0, normal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg,blueNoise()), hand); #endif } // / lightnign flashes fog if (isEyeInWater == 0){ // vec3 lightSource = normalize(WsunVec); // vec3 viewspace_sunvec = mat3(gbufferModelView) * lightSource; // float SdotV = dot(normalize(viewspace_sunvec), normalize(fragpos)); // float lightning_shine = clamp(phaseg(SdotV, 0.35) ,0,1); vec3 flashingfogCol = SunCol * 0.25; float flashingfogdist = clamp(pow(length(fragpos)/far,5.), 0.0, 1.0) ; gl_FragData[0].rgb += flashingfogCol * lightning_shine * flashingfogdist; // vl.a *= 1.0 - sqrt(flashingfogdist); } /* DRAWBUFFERS:3 */ }