// uniform int framemod8; // const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), // vec2(-1.,3.)/8., // vec2(5.0,1.)/8., // vec2(-3,-5.)/8., // vec2(-5.,5.)/8., // vec2(-7.,-1.)/8., // vec2(3,7.)/8., // vec2(7.,-7.)/8.); vec3 lerp(vec3 X, vec3 Y, float A){ return X * (1.0 - A) + Y * A; } float lerp(float X, float Y, float A){ return X * (1.0 - A) + Y * A; } float square(float x){ return x*x; } // vec3 toClipSpace3(vec3 viewSpacePosition) { // return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5; // } float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } float linZ(float depth) { return (2.0 * near) / (far + near - depth * (far - near)); // l = (2*n)/(f+n-d(f-n)) // f+n-d(f-n) = 2n/l // -d(f-n) = ((2n/l)-f-n) // d = -((2n/l)-f-n)/(f-n) } void frisvad(in vec3 n, out vec3 f, out vec3 r){ if(n.z < -0.9) { f = vec3(0.,-1,0); r = vec3(-1, 0, 0); } else { float a = 1./(1.+n.z); float b = -n.x*n.y*a; f = vec3(1. - n.x*n.x*a, b, -n.x) ; r = vec3(b, 1. - n.y*n.y*a , -n.y); } } mat3 CoordBase(vec3 n){ vec3 x,y; frisvad(n,x,y); return mat3(x,y,n); } vec2 R2_Sample(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float fma(float a,float b,float c){ return a * b + c; } vec3 SampleVNDFGGX( vec3 viewerDirection, // Direction pointing towards the viewer, oriented such that +Z corresponds to the surface normal float alpha, // Roughness parameter along X and Y of the distribution vec2 xy // Pair of uniformly distributed numbers in [0, 1) ) { // Transform viewer direction to the hemisphere configuration viewerDirection = normalize(vec3( alpha * 0.5 * viewerDirection.xy, viewerDirection.z)); // Sample a reflection direction off the hemisphere const float tau = 6.2831853; // 2 * pi float phi = tau * xy.x; float cosTheta = fma(1.0 - xy.y, 1.0 + viewerDirection.z, -viewerDirection.z); float sinTheta = sqrt(clamp(1.0 - cosTheta * cosTheta, 0.0, 1.0)); sinTheta = clamp(sinTheta,0.0,1.0); cosTheta = clamp(cosTheta,sinTheta*0.5,1.0); vec3 reflected = vec3(vec2(cos(phi), sin(phi)) * sinTheta, cosTheta); // Evaluate halfway direction // This gives the normal on the hemisphere vec3 halfway = reflected + viewerDirection; // Transform the halfway direction back to hemiellispoid configuation // This gives the final sampled normal return normalize(vec3(alpha * halfway.xy, halfway.z)); } vec3 GGX(vec3 n, vec3 v, vec3 l, float r, vec3 f0, vec3 metalAlbedoTint) { r = max(pow(r,2.5), 0.0001); vec3 h = normalize(l + v); float hn = inversesqrt(dot(h, h)); float dotLH = clamp(dot(h,l)*hn,0.,1.); float dotNH = clamp(dot(h,n)*hn,0.,1.) ; float dotNL = clamp(dot(n,l),0.,1.); float dotNHsq = dotNH*dotNH; float denom = dotNHsq * r - dotNHsq + 1.; float D = r / (3.141592653589793 * denom * denom); vec3 F = (f0 + (1. - f0) * exp2((-5.55473*dotLH-6.98316)*dotLH)) * metalAlbedoTint; float k2 = .25 * r; return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2); } float shlickFresnelRoughness(float XdotN, float roughness){ float shlickFresnel = clamp(1.0 + XdotN,0.0,1.0); // shlickFresnel = pow(1.0-pow(1.0-shlickFresnel, mix(1.0,2.1,roughness)), mix(5.0,3.0,roughness)); // shlickFresnel = mix(0.0, mix(1.0,0.065,1-pow(1-roughness,3.5)), shlickFresnel); // float curves = 1.0-exp(-1.3*roughness); // float brightness = 1.0-exp(-4.0*roughness); float curves = exp(-4.0*pow(1-(roughness),2.5)); float brightness = exp(-3.0*pow(1-sqrt(roughness),3.50)); shlickFresnel = pow(1.0-pow(1.0-shlickFresnel, mix(1.0, 1.9, curves)),mix(5.0, 2.6, curves)); shlickFresnel = mix(0.0, mix(1.0,0.065, brightness) , clamp(shlickFresnel,0.0,1.0)); return shlickFresnel; } vec3 rayTraceSpeculars(vec3 dir, vec3 position, float dither, float quality, bool hand, inout float reflectionLength, float fresnel){ float biasAmount = 0.00005;//mix(0.00035, 0.00005, pow(fresnel,0.01)); vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.0,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z); vec3 stepv = direction * mult / quality*vec3(RENDER_SCALE,1.0); vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*(dither-0.5); #ifndef FORWARD_SPECULAR spos.xy += TAA_Offset*texelSize*0.5/RENDER_SCALE; #endif float minZ = spos.z; float maxZ = spos.z; for (int i = 0; i <= int(quality); i++) { float sp = invLinZ(sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4.0),0).a/65000.0)); float currZ = linZ(spos.z); float nextZ = linZ(sp); // if(abs(nextZ-currZ) < mix(0.005,0.5,currZ*currZ) && sp < max(minZ,maxZ) && sp > min(minZ,maxZ)) return vec3(spos.xy/RENDER_SCALE,sp); if(sp < max(minZ,maxZ) && sp > min(minZ,maxZ)) return vec3(spos.xy/RENDER_SCALE,sp); minZ = maxZ-biasAmount / currZ; maxZ += stepv.z; spos += stepv; reflectionLength += 1.0 / quality; } return vec3(1.1); } vec4 screenSpaceReflections( vec3 reflectedVector, vec3 viewPos, float noise, bool isHand, float roughness, float fresnel ){ vec4 reflection = vec4(0.0); float reflectionLength = 0.0; float quality = 30.0f;//mix(10.0f, 30.0f, fresnel); vec3 raytracePos = rayTraceSpeculars(reflectedVector, viewPos, noise, quality, isHand, reflectionLength, fresnel); if (raytracePos.z >= 1.0) return reflection; // use higher LOD as the reflection goes on, to blur it. this helps denoise a little. float value = 0.1; reflectionLength = min(max(reflectionLength - value, 0.0)/(1.0-value), 1.0); float LOD = mix(0.0, 6.0*(1.0-exp(-15.0*sqrt(roughness))), 1.0-pow(1.0-reflectionLength,5.0)); // float LOD = mix(0.0, 6.0*pow(roughness,0.1), 1.0-pow(1.0-reflectionLength,5.0)); // float LOD = clamp(pow(reflectionLength, pow(1.0-sqrt(roughness),5.0) * 3.0) * 6.0, 0.0, 6.0*pow(roughness,0.1)); vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(raytracePos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) { reflection.a = 1.0; #ifdef FORWARD_RENDERED_SPECULAR // vec2 clampedRes = max(vec2(viewWidth,viewHeight),vec2(1920.0,1080.)); // vec2 resScale = vec2(1920.,1080.)/clampedRes; // vec2 bloomTileUV = (((previousPosition.xy/texelSize)*2.0 + 0.5)*texelSize/2.0) / clampedRes*vec2(1920.,1080.); // reflection.rgb = texture2D(colortex6, bloomTileUV / 4.0).rgb; reflection.rgb = texture2D(colortex5, previousPosition.xy).rgb; #else reflection.rgb = texture2DLod(colortex5, previousPosition.xy, LOD).rgb; #endif } // reflection.rgb = vec3(LOD/6); // vec2 clampedRes = max(vec2(viewWidth,viewHeight),vec2(1920.0,1080.)); // vec2 resScale = vec2(1920.,1080.)/clampedRes; // vec2 bloomTileUV = (((previousPosition.xy/texelSize)*2.0 + 0.5)*texelSize/2.0) / clampedRes*vec2(1920.,1080.); // vec2 bloomTileoffsetUV[6] = vec2[]( // bloomTileUV / 4., // bloomTileUV / 8. + vec2(0.25*resScale.x+2.5*texelSize.x, .0), // bloomTileUV / 16. + vec2(0.375*resScale.x+4.5*texelSize.x, .0), // bloomTileUV / 32. + vec2(0.4375*resScale.x+6.5*texelSize.x, .0), // bloomTileUV / 64. + vec2(0.46875*resScale.x+8.5*texelSize.x, .0), // bloomTileUV / 128. + vec2(0.484375*resScale.x+10.5*texelSize.x, .0) // ); // // reflectLength = pow(1-pow(1-reflectLength,2),5) * 6; // reflectLength = (exp(-4*(1-reflectLength))) * 6; // Reflections.rgb = texture2D(colortex6, bloomTileoffsetUV[0]).rgb; return reflection; } float getReflectionVisibility(float f0, float roughness){ // the goal is to determine if the reflection is even visible. // if it reaches a point in smoothness or reflectance where it is not visible, allow it to interpolate to diffuse lighting. float thresholdValue = Roughness_Threshold; if(thresholdValue < 0.01) return 0.0; // the visibility gradient should only happen for dialectric materials. because metal is always shiny i guess or something float dialectrics = max(f0*255.0 - 26.0,0.0)/229.0; float value = 0.35; // so to a value you think is good enough. float thresholdA = min(max( (1.0-dialectrics) - value, 0.0)/value, 1.0); // use perceptual smoothness instead of linear roughness. it just works better i guess float smoothness = 1.0-sqrt(roughness); value = thresholdValue; // this one is typically want you want to scale. float thresholdB = min(max(smoothness - value, 0.0)/value, 1.0); // preserve super smooth reflections. if thresholdB's value is really high, then fully smooth, low f0 materials would be removed (like water). value = 0.1; // super low so only the smoothest of materials are includes. float thresholdC = 1.0-min(max(value - (1.0-smoothness), 0.0)/value, 1.0); float visibilityGradient = max(thresholdA*thresholdC - thresholdB,0.0); // a curve to make the gradient look smooth/nonlinear. just preference visibilityGradient = 1.0-visibilityGradient; visibilityGradient *=visibilityGradient; visibilityGradient = 1.0-visibilityGradient; visibilityGradient *=visibilityGradient; return visibilityGradient; } // derived from N and K from labPBR wiki https://shaderlabs.org/wiki/LabPBR_Material_Standard // using ((1.0 - N)^2 + K^2) / ((1.0 + N)^2 + K^2) vec3 HCM_F0 [8] = vec3[]( vec3(0.531228825312, 0.51235724246, 0.495828545714),// iron vec3(0.944229966045, 0.77610211732, 0.373402004593),// gold vec3(0.912298031535, 0.91385063144, 0.919680580954),// Aluminum vec3(0.55559681715, 0.55453707574, 0.554779427513),// Chrome vec3(0.925952196272, 0.72090163805, 0.504154241735),// Copper vec3(0.632483812932, 0.62593707362, 0.641478899539),// Lead vec3(0.678849234658, 0.64240055565, 0.588409633571),// Platinum vec3(0.961999998804, 0.94946811207, 0.922115710997) // Silver ); vec3 specularReflections( in vec3 viewPos, // toScreenspace(vec3(screenUV, depth) in vec3 playerPos, // normalized in vec3 lightPos, // should be in world space in vec3 noise, // x = bluenoise y = interleaved gradient noise in vec3 normal, // normals in world space in float roughness, // red channel of specular texture _S in float f0, // green channel of specular texture _S in vec3 albedo, in vec3 diffuseLighting, in vec3 lightColor, // should contain the light's color and shadows. in float lightmap, // in anything other than world0, this should be 1.0; in bool isHand // mask for the hand #ifdef FORWARD_SPECULAR , inout float reflectanceForAlpha #else , bool isWater #endif ){ #ifdef FORWARD_RENDERED_SPECULAR lightmap = pow(min(max(lightmap-0.6,0.0)*2.5,1.0),2.0); #else lightmap = clamp((lightmap-0.8)*7.0, 0.0,1.0); #endif roughness = 1.0 - roughness; roughness *= roughness; f0 = f0 == 0.0 ? 0.02 : f0; // f0 = 0.9; // roughness = 0.0; bool isMetal = f0 > 229.5/255.0; // #ifndef FORWARD_RENDERED_SPECULAR // // underwater, convert from f0 air, to ior, then back to f0 water // if(!isMetal || isWater){ // f0 = 2.0 / (1.0 - sqrt(f0)) - 1.0; // f0 = clamp(pow((1.33 - f0) / (1.33 + f0), 2.0),0.0,1.0); // } // #endif // get reflected vector mat3 basis = CoordBase(normal); vec3 viewDir = -playerPos*basis; #if defined FORWARD_ROUGH_REFLECTION || defined DEFERRED_ROUGH_REFLECTION vec3 samplePoints = SampleVNDFGGX(viewDir, roughness, noise.xy); vec3 reflectedVector_L = basis * reflect(-normalize(viewDir), samplePoints); // get reflectance and f0/HCM values // float shlickFresnel = pow(clamp(1.0 + dot(-reflectedVector, samplePoints),0.0,1.0),5.0); #else vec3 reflectedVector_L = reflect(playerPos, normal); #endif float shlickFresnel = shlickFresnelRoughness(dot(-normalize(viewDir), vec3(0.0,0.0,1.0)), roughness); // #if defined FORWARD_RENDERED_SPECULAR && defined SNELLS_WINDOW // if(isEyeInWater == 1) shlickFresnel = mix(shlickFresnel, 1.0, min(max(0.97 - (1-shlickFresnel),0.0)/(1-0.97),1.0)); // #endif // F0 < 230 dialectrics // F0 >= 230 hardcoded metal f0 // F0 == 255 use albedo for f0 albedo = f0 == 1.0 ? sqrt(albedo) : albedo; vec3 metalAlbedoTint = isMetal ? albedo : vec3(1.0); // get F0 values for hardcoded metals. vec3 hardCodedMetalsF0 = f0 == 1.0 ? albedo : HCM_F0[int(clamp(f0*255.0 - 229.5,0.0,7.0))]; vec3 reflectance = isMetal ? hardCodedMetalsF0 : vec3(f0); vec3 F0 = (reflectance + (1.0-reflectance) * shlickFresnel) * metalAlbedoTint; #if defined FORWARD_SPECULAR reflectanceForAlpha = clamp(dot(F0, vec3(0.3333333)), 0.0,1.0); #endif vec3 specularReflections = diffuseLighting; float reflectionVisibilty = getReflectionVisibility(f0, roughness); #if defined DEFERRED_BACKGROUND_REFLECTION || defined FORWARD_BACKGROUND_REFLECTION || defined DEFERRED_ENVIORNMENT_REFLECTION || defined FORWARD_ENVIORNMENT_REFLECTION if(reflectionVisibilty < 1.0){ #if defined DEFERRED_BACKGROUND_REFLECTION || defined FORWARD_BACKGROUND_REFLECTION #if !defined OVERWORLD_SHADER && !defined FORWARD_SPECULAR vec3 backgroundReflection = volumetricsFromTex(reflectedVector_L, colortex4, roughness).rgb / 1200.0; #else vec3 backgroundReflection = skyCloudsFromTex(reflectedVector_L, colortex4).rgb / 1200.0; #endif #endif #if defined DEFERRED_ENVIORNMENT_REFLECTION || defined FORWARD_ENVIORNMENT_REFLECTION vec4 enviornmentReflection = screenSpaceReflections(mat3(gbufferModelView) * reflectedVector_L, viewPos, noise.y, isHand, roughness, shlickFresnel); // darkening for metals. vec3 DarkenedDiffuseLighting = isMetal ? diffuseLighting * (1.0-enviornmentReflection.a) * (1.0-lightmap) : diffuseLighting; #else // darkening for metals. vec3 DarkenedDiffuseLighting = isMetal ? diffuseLighting * (1.0-lightmap) : diffuseLighting; #endif // composite all the different reflections together #if defined DEFERRED_BACKGROUND_REFLECTION || defined FORWARD_BACKGROUND_REFLECTION specularReflections = mix(DarkenedDiffuseLighting, backgroundReflection, lightmap); #endif #if defined DEFERRED_ENVIORNMENT_REFLECTION || defined FORWARD_ENVIORNMENT_REFLECTION specularReflections = mix(specularReflections, enviornmentReflection.rgb, enviornmentReflection.a); #endif specularReflections = mix(DarkenedDiffuseLighting, specularReflections, F0); // lerp back to diffuse lighting if the reflection has not been deemed visible enough specularReflections = mix(specularReflections, diffuseLighting, reflectionVisibilty); } #endif #if defined OVERWORLD_SHADER vec3 lightSourceReflection = Sun_specular_Strength * lightColor * GGX(normal, -playerPos, lightPos, roughness, reflectance, metalAlbedoTint); specularReflections += lightSourceReflection; #endif return specularReflections; } /* void DoSpecularReflections( inout vec3 Output, vec3 FragPos, // toScreenspace(vec3(screenUV, depth) vec3 WorldPos, vec3 LightPos, // should be in world space vec2 Noise, // x = bluenoise z = interleaved gradient noise vec3 Normal, // normals in world space float Roughness, // red channel of specular texture _S float F0, // green channel of specular texture _S vec3 Albedo, vec3 Diffuse, // should contain the light color and NdotL. and maybe shadows. float Lightmap, // in anything other than world0, this should be 1.0; bool Hand // mask for the hand ){ vec3 Final_Reflection = Output; vec3 Background_Reflection = Output; vec3 Lightsource_Reflection = vec3(0.0); vec4 SS_Reflections = vec4(0.0); float reflectLength = 0.0; Lightmap = clamp((Lightmap-0.8)*7.0, 0.0,1.0); Roughness = 1.0 - Roughness; Roughness *= Roughness; F0 = F0 == 0.0 ? 0.02 : F0; // F0 = 230.0/255.0; // Roughness = 0.0; // F0 = 230.0/255.0; bool isMetal = F0 > 229.5/255.0; // underwater, convert from f0 air, to ior, then back to f0 water // if(!isMetal){ // F0 = 2.0 / (1.0 - sqrt(F0)) - 1.0; // F0 = clamp(pow((1.33 - F0) / (1.33 + F0), 2.0),0.0,1.0); // } // Roughness = 0.0; mat3 Basis = CoordBase(Normal); vec3 ViewDir = -WorldPos*Basis; #ifdef Rough_reflections vec3 SamplePoints = SampleVNDFGGX(ViewDir, Roughness, Noise.xy); // vec3 SamplePoints = SampleVNDFGGX(ViewDir, vec2(0.1), Noise.x); if(Hand) SamplePoints = vec3(0.0,0.0,1.0); #else vec3 SamplePoints = vec3(0.0,0.0,1.0); #endif vec3 Ln = reflect(-ViewDir, SamplePoints); vec3 L = Basis * Ln; float Fresnel = pow(clamp(1.0 + dot(-Ln, SamplePoints),0.0,1.0),5.0); // Schlick's approximation // F0 < 230 dialectrics // F0 >= 230 hardcoded metal f0 // F0 == 255 use albedo for f0 Albedo = F0 == 1.0 ? sqrt(Albedo) : Albedo; vec3 metalAlbedoTint = isMetal ? Albedo : vec3(1.0); // metalAlbedoTint = vec3(1.0); // get F0 values for hardcoded metals. vec3 hardCodedMetalsF0 = F0 == 1.0 ? Albedo : HCM_F0[int(max(F0*255.0 - 229.5,0.0))]; vec3 reflectance = isMetal ? hardCodedMetalsF0 : vec3(F0); vec3 f0 = (reflectance + (1.0-reflectance) * Fresnel) * metalAlbedoTint; // reflectance = mix(vec3(F0), vec3(1.0), Fresnel); // vec3 reflectance = mix(R0, vec3(1.0), Fresnel); // ensure that when the angle is 0 that the correct F0 is used. // #ifdef Rough_reflections // if(Hand) Fresnel = Fresnel * pow(1.0-Roughness,F0 > 229.5/255.0 ? 1.0 : 3.0); // #else // Fresnel = Fresnel * pow(1.0-Roughness,3.0); // #endif bool hasReflections = Roughness_Threshold == 1.0 ? true : F0 * (1.0 - Roughness * Roughness_Threshold) > 0.01; // mulitply all reflections by the albedo if it is a metal. // vec3 Metals = F0 > 229.5/255.0 ? normalize(Albedo+1e-7) * (dot(Albedo,vec3(0.21, 0.72, 0.07)) * 0.7 + 0.3) : vec3(1.0); // vec3 Metals = F0 > 229.5/255.0 ? Albedo : vec3(1.0); // --------------- BACKGROUND REFLECTIONS // apply background reflections to the final color. make sure it does not exist based on the lightmap #ifdef Sky_reflection #ifdef OVERWORLD_SHADER if(hasReflections) Background_Reflection = (skyCloudsFromTex(L, colortex4).rgb / 1200.0) ; #else if(hasReflections) Background_Reflection = (volumetricsFromTex(L, colortex4, sqrt(Roughness) * 6.0).rgb / 1200.0) ; #endif // take fresnel and lightmap levels into account and write to the final color // the minimum color being the output is for when the background reflection color is close to dark, it will fallback to a dimmed diffuse // Final_Reflection = mix(Output, Background_Reflection, Lightmap * reflectance); Final_Reflection = mix(Output, mix(isMetal ? vec3(0.0) : Output, Background_Reflection, f0 * Lightmap), Lightmap); // Final_Reflection = Background_Reflection * reflectance; #endif // --------------- SCREENSPACE REFLECTIONS // apply screenspace reflections to the final color and mask out background reflections. #ifdef Screen_Space_Reflections if(hasReflections){ float SSR_Quality =reflection_quality;// mix(6.0, reflection_quality, Fresnel); // Scale quality with fresnel vec3 RaytracePos = rayTraceSpeculars(mat3(gbufferModelView) * L, FragPos, Noise.y, float(SSR_Quality), Hand, reflectLength); float LOD = clamp(pow(reflectLength, pow(1.0-sqrt(Roughness),5.0) * 3.0) * 6.0, 0.0, 6.0); // use higher LOD as the reflection goes on, to blur it. this helps denoise a little. // float LOD = clamp((1-pow(clamp(1.0-reflectLength,0,1),5.0)) * 6.0, 0.0, 6.0); // use higher LOD as the reflection goes on, to blur it. this helps denoise a little. if(Roughness <= 0.0) LOD = 0.0; // LOD = 0.0; if (RaytracePos.z < 1.0){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(RaytracePos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) { SS_Reflections.a = 1.0; SS_Reflections.rgb = texture2DLod(colortex5, previousPosition.xy, LOD).rgb; } } // make sure it takes the fresnel into account for SSR. SS_Reflections.rgb = mix(isMetal ? vec3(0.0) : Output, SS_Reflections.rgb, f0); // occlude the background with the SSR and write to the final color. Final_Reflection = mix(Final_Reflection, SS_Reflections.rgb, SS_Reflections.a); } #endif // --------------- LIGHTSOURCE REFLECTIONS // slap the main lightsource reflections to the final color. #ifdef LIGHTSOURCE_REFLECTION Lightsource_Reflection = Diffuse * GGX(Normal, -WorldPos, LightPos, Roughness, reflectance, metalAlbedoTint) * Sun_specular_Strength; Final_Reflection += Lightsource_Reflection; #endif Output = Final_Reflection; // Output = exp(-100 * (reflectLength*reflectLength*reflectLength)) * vec3(1.0); } */