uniform float noPuddleAreas; float densityAtPosFog(in vec3 pos){ pos /= 18.; pos.xz *= 0.5; vec3 p = floor(pos); vec3 f = fract(pos); f = (f*f) * (3.-2.*f); vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0); vec2 coord = uv / 512.0; vec2 xy = texture2D(noisetex, coord).yx; return mix(xy.r,xy.g, f.y); } float cloudVol(in vec3 pos){ vec3 samplePos = pos*vec3(1.0,1./24.,1.0); vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0); float fogYstart = FOG_START_HEIGHT+3; float mult = exp( -max((pos.y - fogYstart) / 35.,0.0)); float fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0 ); float fog_eroded = 1.0 - densityAtPosFog(samplePos2 * 200.0 ); // float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, max(fog_shape-0.8,0.0)) * mult; float heightlimit = exp2( -max((pos.y - fogYstart * (1.0+snowStorm)) / 25.,0.0)); float CloudyFog = max((fog_shape*1.2 - fog_eroded*0.2) - 0.75,0.0) * heightlimit ; float UniformFog = exp( max(pos.y - fogYstart,0.0) / -25); // UniformFog = 1.0; float RainFog = ((2 + max(fog_shape*10. - 7.0,0.5)*2.0)) *UniformFog* rainStrength * noPuddleAreas * RainFog_amount; // float RainFog = (CloudyFog*255) * rainStrength * noPuddleAreas * RainFog_amount; #ifdef PER_BIOME_ENVIRONMENT // sandstorms and snowstorms if(sandStorm > 0 || snowStorm > 0) CloudyFog = mix(CloudyFog, max(densityAtPosFog((samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*10) * 100.0 ) - 0.2,0.0) * heightlimit, sandStorm+snowStorm); #endif TimeOfDayFog(UniformFog, CloudyFog); float noise = densityAtPosFog(samplePos * 12.0); float erosion = 1.0-densityAtPosFog(samplePos2 * (125 - (1-pow(1-noise,5))*25)); // float clumpyFog = max(exp(noise * -5)*2 - (erosion*erosion), 0.0); // float testfogshapes = clumpyFog*30; // return testfogshapes; return CloudyFog + UniformFog + RainFog; } float phaseRayleigh(float cosTheta) { const vec2 mul_add = vec2(0.1, 0.28) / acos(-1.0); return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation } float fogPhase(float lightPoint){ float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0); float linear2 = 1.0 - clamp(lightPoint,0.0,1.0); float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5; exponential += sqrt(exp2(sqrt(linear) * -12.5)); return exponential; } vec4 GetVolumetricFog( vec3 viewPosition, vec2 dither, vec3 LightColor, vec3 AmbientColor ){ /// ------------- RAYMARCHING STUFF ------------- \\\ //project pixel position into projected shadowmap space vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz; vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz; fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz; //project view origin into projected shadowmap space vec3 start = toShadowSpaceProjected(vec3(0.0)); //rayvector into projected shadow map space //we can use a projected vector because its orthographic projection //however we still have to send it to curved shadow map space every step vec3 dV = fragposition - start; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float maxLength = min(length(dVWorld), far)/length(dVWorld); dV *= maxLength; dVWorld *= maxLength; float dL = length(dVWorld); float mult = length(dVWorld)/25; vec3 progress = start.xyz; vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition; vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a; float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a; /// ------------- COLOR/LIGHTING STUFF ------------- \\\ vec3 color = vec3(0.0); vec3 absorbance = vec3(1.0); ///// ----- fog lighting //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx) float mie = fogPhase(SdotV) * 5.0; float rayL = phaseRayleigh(SdotV); vec3 rC = vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5); vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6); vec3 skyLightPhased = AmbientColor; vec3 LightSourcePhased = LightColor; #ifdef ambientLight_only LightSourcePhased = vec3(0.0); #endif #ifdef PER_BIOME_ENVIRONMENT BiomeFogColor(LightSourcePhased); BiomeFogColor(skyLightPhased); #endif skyLightPhased = max(skyLightPhased + skyLightPhased*(normalize(wpos).y*0.9+0.1),0.0); LightSourcePhased *= mie; float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0); // #ifdef RAYMARCH_CLOUDS_WITH_FOG // // first cloud layer // float MinHeight_0 = Cumulus_height; // float MaxHeight_0 = 100 + MinHeight_0; // // second cloud layer // float MinHeight_1 = MaxHeight_0 + 50; // float MaxHeight_1 = 100 + MinHeight_1; // vec3 SkyLightColor = AmbientColor; // vec3 LightSourceColor = LightColor; // #ifdef ambientLight_only // LightSourceColor = vec3(0.0); // #endif // float shadowStep = 200.0; // vec3 dV_Sun = WsunVec*shadowStep; // float mieDay = phaseg(SdotV, 0.75); // float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ; // vec3 directScattering = LightSourceColor * mieDay * 3.14; // vec3 directMultiScattering = LightSourceColor * mieDayMulti * 4.0; // vec3 sunIndirectScattering = LightSourceColor * phaseg(dot(mat3(gbufferModelView)*vec3(0,1,0),normalize(viewPosition)), 0.5) * 3.14; // #endif float expFactor = 11.0; for (int i=0;i 0.0; // float CloudBaseHeights = isUpperLayer ? 200.0 + MaxHeight_0 : MaxHeight_0; // float cumulus = GetCumulusDensity(progressW, 1, MinHeight_0, MaxHeight_0); // float fadedDensity = Cumulus_density * clamp(exp( (progressW.y - (CloudBaseHeights - 70)) / 9.0 ),0.0,1.0); // if(cumulus > 1e-5){ // float muE = cumulus*fadedDensity; // float directLight = 0.0; // for (int j=0; j < 3; j++){ // vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05)); // float shadow = GetCumulusDensity(shadowSamplePos, 0, MinHeight_0, MaxHeight_0) * Cumulus_density; // directLight += shadow; // } // if(max(progressW.y - MaxHeight_1 + 50,0.0) < 1.0) directLight += Cumulus_density * 2.0 * GetCumulusDensity(progressW + dV_Sun/abs(dV_Sun.y) * max((MaxHeight_1 - 30.0) - progressW.y,0.0), 0, MinHeight_0, MaxHeight_0); // float upperLayerOcclusion = !isUpperLayer ? Cumulus_density * 2.0 * GetCumulusDensity(progressW + vec3(0.0,1.0,0.0) * max((MaxHeight_1 - 30.0) - progressW.y,0.0), 0, MinHeight_0, MaxHeight_0) : 0.0; // float skylightOcclusion = max(exp2((upperLayerOcclusion*upperLayerOcclusion) * -5), 0.75); // float skyScatter = clamp((CloudBaseHeights - 20 - progressW.y) / 275.0,0.0,1.0); // vec3 cloudlighting = DoCloudLighting(muE, cumulus, SkyLightColor*skylightOcclusion, skyScatter, directLight, directScattering*sh2, directMultiScattering*sh2, 1.0); // // a horrible approximation of direct light indirectly hitting the lower layer of clouds after scattering through/bouncing off the upper layer. // cloudlighting += sunIndirectScattering * exp((skyScatter*skyScatter) * cumulus * -35.0) * upperLayerOcclusion * exp(-20.0 * pow(abs(upperLayerOcclusion - 0.3),2)); // color += max(cloudlighting - cloudlighting*exp(-muE*dd*dL),0.0) * absorbance; // absorbance *= max(exp(-muE*dd*dL),0.0); // } // #endif /// VL CLOUDS } return vec4(color, min(dot(absorbance,vec3(0.335)),1.0)); } /* // uniform bool inSpecialBiome; vec4 GetVolumetricFog( vec3 viewPosition, float dither, vec3 LightColor, vec3 AmbientColor ){ /// ------------- RAYMARCHING STUFF ------------- \\\ //project pixel position into projected shadowmap space vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz; vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz; fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz; //project view origin into projected shadowmap space vec3 start = toShadowSpaceProjected(vec3(0.0)); //rayvector into projected shadow map space //we can use a projected vector because its orthographic projection //however we still have to send it to curved shadow map space every step vec3 dV = fragposition - start; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float maxLength = min(length(dVWorld), far)/length(dVWorld); dV *= maxLength; dVWorld *= maxLength; float dL = length(dVWorld); vec3 progress = start.xyz; vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition; vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a; float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a; /// ------------- COLOR/LIGHTING STUFF ------------- \\\ vec3 color = vec3(0.0); vec3 absorbance = vec3(1.0); //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx) float mie = fogPhase(SdotV) * 5.0; float rayL = phaseRayleigh(SdotV); vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5); vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6); vec3 LightSourceColor = LightColor; #ifdef ambientLight_only LightSourceColor = vec3(0.0); #endif vec3 skyCol0 = AmbientColor; #ifdef PER_BIOME_ENVIRONMENT BiomeFogColor(LightSourceColor); BiomeFogColor(skyCol0); #endif skyCol0 = max(skyCol0 + skyCol0*(normalize(wpos).y*0.9+0.1),0.0); float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0); float expFactor = 11.0; for (int i=0;i