float luma(vec3 color) { return dot(color,vec3(0.299, 0.587, 0.114)); } float phaseRayleigh(float cosTheta) { const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0); return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation } // #define TIMEOFDAYFOG // #include "/lib/climate_settings.glsl" // uniform int worldTime; // void TimeOfDayFog( inout float Uniform, inout float Cloudy) { // float Time = (worldTime%24000)*1.0; // // set schedules for fog to appear at specific ranges of time in the day. // float Morning = clamp((Time-22000)/2000,0,1) + clamp((2000-Time)/2000,0,1); // float Noon = clamp(Time/2000,0,1) * clamp((12000-Time)/2000,0,1); // float Evening = clamp((Time-10000)/2000,0,1) * clamp((14000-Time)/2000,0,1) ; // float Night = clamp((Time-12000)/2000,0,1) * clamp((23000-Time)/2000,0,1) ; // vec4 UniformDensity = vec4(0, 55, 0, 0); // vec4 CloudyDensity = vec4(0, 0, 0, 0); // Uniform *= Morning*UniformDensity.r + Noon*UniformDensity.g + Evening*UniformDensity.b + Night*UniformDensity.a; // Cloudy *= Morning*CloudyDensity.r + Noon*CloudyDensity.g + Evening*CloudyDensity.b + Night*CloudyDensity.a; // } float cloudVol(in vec3 pos){ vec3 samplePos = pos*vec3(1.0,1./24.,1.0); vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0); float mult = exp2( -max((pos.y - SEA_LEVEL) / 35.,0.0)); float fog_shape = 1-densityAtPos(samplePos * 24.0); float fog_eroded = densityAtPos( samplePos2 * 150.0); float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.4, 0.0) * mult; float UniformFog = exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)); float RainFog = max(fog_shape*10. - 7.,0.5) * exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)) * 5. * rainStrength; TimeOfDayFog(UniformFog, CloudyFog); return RainFog + CloudyFog + UniformFog; } mat2x3 getVolumetricRays( float dither, vec3 fragpos ){ //project pixel position into projected shadowmap space vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz; fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz; //project view origin into projected shadowmap space vec3 start = toShadowSpaceProjected(vec3(0.)); //rayvector into projected shadow map space //we can use a projected vector because its orthographic projection //however we still have to send it to curved shadow map space every step vec3 dV = fragposition-start; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float maxLength = min(length(dVWorld),far)/length(dVWorld); dV *= maxLength; dVWorld *= maxLength; //apply dither vec3 progress = start.xyz; vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition; vec3 vL = vec3(0.); float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a; float dL = length(dVWorld); //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx) float mie = phaseg(SdotV,0.7)*5.0 + 1.0; float rayL = phaseRayleigh(SdotV); // Makes fog more white idk how to simulate it correctly vec3 sunColor = lightCol.rgb / 5.0; vec3 skyCol0 = (ambientUp / 5.0 * 5.); // * max(abs(WsunVec.y)/150.0,0.); vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5); vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6); float mu = 1.0; float muS = mu; vec3 absorbance = vec3(1.0); float expFactor = 11.0; vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a; float cloudShadow = 1.0; for (int i=0;i