// uniform float LowCoverage; // uniform float isDeserts; const float sunAngularSize = 0.533333; const float moonAngularSize = 0.516667; //Sky coefficients and heights #define airNumberDensity 2.5035422e25 #define ozoneConcentrationPeak 8e-6 const float ozoneNumberDensity = airNumberDensity * ozoneConcentrationPeak; #define ozoneCrossSection vec3(4.51103766177301e-21, 3.2854797958699e-21, 1.96774621921165e-22) #define sky_planetRadius 6731e3 #define sky_atmosphereHeight 110e3 #define sky_scaleHeights vec2(8.0e3, 1.2e3) #define sky_coefficientRayleigh vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5) #define sky_coefficientMie vec3(sky_coefficientMieR*1e-6, sky_coefficientMieG*1e-6, sky_coefficientMieB*1e-6) // Should be >= 2e-6 const vec3 sky_coefficientOzone = (ozoneCrossSection * (ozoneNumberDensity * 0.2e-6)); // ozone cross section * (ozone number density * (cm ^ 3)) const vec2 sky_inverseScaleHeights = 1.0 / sky_scaleHeights; const vec2 sky_scaledPlanetRadius = sky_planetRadius * sky_inverseScaleHeights; const float sky_atmosphereRadius = sky_planetRadius + sky_atmosphereHeight; const float sky_atmosphereRadiusSquared = sky_atmosphereRadius * sky_atmosphereRadius; #define sky_coefficientsScattering mat2x3(sky_coefficientRayleigh, sky_coefficientMie) const mat3 sky_coefficientsAttenuation = mat3(sky_coefficientRayleigh , sky_coefficientMie, sky_coefficientOzone ); // commonly called the extinction coefficient float sky_rayleighPhase(float cosTheta) { const vec2 mul_add = vec2(0.1, 0.28) * rPI; return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation } float sky_miePhase(float cosTheta, const float g) { float gg = g * g; return (gg * -0.25 + 0.25) * rPI * pow(-(2.0 * g) * cosTheta + (gg + 1.0), -1.5); } vec2 sky_phase(float cosTheta, const float g) { return vec2(sky_rayleighPhase(cosTheta), sky_miePhase(cosTheta, g)); } vec3 sky_density(float centerDistance) { vec2 rayleighMie = exp(centerDistance * -sky_inverseScaleHeights + sky_scaledPlanetRadius); // Ozone distribution curve by Sergeant Sarcasm - https://www.desmos.com/calculator/j0wozszdwa float ozone = exp(-max(0.0, (35000.0 - centerDistance) - sky_planetRadius) * (1.0 / 5000.0)) * exp(-max(0.0, (centerDistance - 35000.0) - sky_planetRadius) * (1.0 / 15000.0)); return vec3(rayleighMie, ozone); } vec3 sky_airmass(vec3 position, vec3 direction, float rayLength, const float steps) { float stepSize = rayLength * (1.0 / steps); vec3 increment = direction * stepSize; position += increment * 0.5; vec3 airmass = vec3(0.0); for (int i = 0; i < steps; ++i, position += increment) { airmass += sky_density(length(position)); } return airmass * stepSize; } vec3 sky_airmass(vec3 position, vec3 direction, const float steps) { float rayLength = dot(position, direction); rayLength = rayLength * rayLength + sky_atmosphereRadiusSquared - dot(position, position); if (rayLength < 0.0) return vec3(0.0); rayLength = sqrt(rayLength) - dot(position, direction); return sky_airmass(position, direction, rayLength, steps); } vec3 sky_opticalDepth(vec3 position, vec3 direction, float rayLength, const float steps) { return sky_coefficientsAttenuation * sky_airmass(position, direction, rayLength, steps); } vec3 sky_opticalDepth(vec3 position, vec3 direction, const float steps) { return sky_coefficientsAttenuation * sky_airmass(position, direction, steps); } vec3 sky_transmittance(vec3 position, vec3 direction, const float steps) { return exp2(-sky_opticalDepth(position, direction, steps) * rLOG2); } vec3 calculateAtmosphere(vec3 background, vec3 viewVector, vec3 upVector, vec3 sunVector, vec3 moonVector, out vec2 pid, out vec3 transmittance, const int iSteps, float noise) { const int jSteps = 4; vec3 viewPosition = (sky_planetRadius + eyeAltitude) * upVector; vec2 aid = rsi(viewPosition, viewVector, sky_atmosphereRadius); if (aid.y < 0.0) {transmittance = vec3(1.0); return vec3(0.0);} pid = rsi(viewPosition, viewVector, sky_planetRadius * 0.998); bool planetIntersected = pid.y >= 0.0; vec2 sd = vec2((planetIntersected && pid.x < 0.0) ? pid.y : max(aid.x, 0.0), (planetIntersected && pid.x > 0.0) ? pid.x : aid.y); float stepSize = (sd.y - sd.x) * (1.0 / iSteps); vec3 increment = viewVector * stepSize; vec3 position = viewVector * sd.x + viewPosition; position += increment * (0.34*noise); vec2 phaseSun = sky_phase(dot(viewVector, sunVector ), sky_mieg) ; vec2 phaseMoon = sky_phase(dot(viewVector, moonVector), sky_mieg); vec3 scatteringSun = vec3(0.0); vec3 scatteringMoon = vec3(0.0); vec3 scatteringAmbient = vec3(0.0); transmittance = vec3(1.0); // float low_sun = clamp(pow(1.0-sunVector.y,10.0) + 1.0,1.0, 2.0); float high_sun = clamp(pow(sunVector.y+0.6,5),0.0,1.0) * 3.0; // make sunrise less blue, and allow sunset to be bluer float low_sun = clamp(((1.0-abs(sunVector.y))*3.) - high_sun,1.0,2.5) ; for (int i = 0; i < iSteps; ++i, position += increment) { vec3 density = sky_density(length(position)); if (density.y > 1e35) break; vec3 stepAirmass = density * stepSize ; vec3 stepOpticalDepth = sky_coefficientsAttenuation * stepAirmass ; vec3 stepTransmittance = exp2(-stepOpticalDepth * rLOG2) ; vec3 stepTransmittedFraction = clamp01((stepTransmittance - 1.0) / -stepOpticalDepth) ; vec3 stepScatteringVisible = transmittance * stepTransmittedFraction ; scatteringSun += sky_coefficientsScattering * (stepAirmass.xy * phaseSun ) * stepScatteringVisible * sky_transmittance(position, sunVector*0.5+0.1, jSteps) ; scatteringMoon += sky_coefficientsScattering * (stepAirmass.xy * phaseMoon) * stepScatteringVisible * sky_transmittance(position, moonVector, jSteps); // Nice way to fake multiple scattering. scatteringAmbient += sky_coefficientsScattering * stepAirmass.xy * (stepScatteringVisible * low_sun ); transmittance *= stepTransmittance ; } vec3 scattering = scatteringSun * sunColorBase + (scatteringAmbient) * background + scatteringMoon*moonColorBase ; // scattering = vec3(0,high_sun*255.,0); return scattering; }