#version 120 #extension GL_EXT_gpu_shader4 : enable #include "lib/settings.glsl" #include "lib/res_params.glsl" flat varying vec3 ambientUp; flat varying vec3 ambientLeft; flat varying vec3 ambientRight; flat varying vec3 ambientB; flat varying vec3 ambientF; flat varying vec3 ambientDown; flat varying vec3 zenithColor; flat varying vec3 sunColor; flat varying vec3 sunColorCloud; flat varying vec3 moonColor; flat varying vec3 moonColorCloud; flat varying vec3 lightSourceColor; flat varying vec3 avgSky; flat varying vec2 tempOffsets; flat varying float exposure; flat varying float avgBrightness; flat varying float exposureF; flat varying float rodExposure; flat varying float fogAmount; flat varying float VFAmount; flat varying float avgL2; flat varying float centerDepth; uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D depthtex0; flat varying vec3 WsunVec; uniform mat4 gbufferModelViewInverse; uniform vec3 sunPosition; uniform vec2 texelSize; uniform float rainStrength; uniform float sunElevation; uniform float nightVision; uniform float near; uniform float far; uniform float frameTime; uniform float eyeAltitude; uniform int frameCounter; uniform int worldTime; vec3 sunVec = normalize(mat3(gbufferModelViewInverse) *sunPosition); #include "lib/sky_gradient.glsl" #include "/lib/util.glsl" #include "/lib/ROBOBO_sky.glsl" vec3 rodSample(vec2 Xi) { float r = sqrt(1.0f - Xi.x*Xi.y); float phi = 2 * 3.14159265359 * Xi.y; return normalize(vec3(cos(phi) * r, sin(phi) * r, Xi.x)).xzy; } vec3 cosineHemisphereSample(vec2 Xi) { float r = sqrt(Xi.x); float theta = 2.0 * 3.14159265359 * Xi.y; float x = r * cos(theta); float y = r * sin(theta); return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.))); } float luma(vec3 color) { return dot(color,vec3(0.21, 0.72, 0.07)); } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter) { float alpha = float(sampleNumber+jitter)/nb; float angle = (jitter+alpha) * (nbRot * 6.28); float ssR = alpha; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } //Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float tanh(float x){ return (exp(x) - exp(-x))/(exp(x) + exp(-x)); } float ld(float depth) { return (2.0 * near) / (far + near - depth * (far - near)); // (-depth * (far - near)) = (2.0 * near)/ld - far - near } void main() { gl_Position = ftransform()*0.5+0.5; gl_Position.xy = gl_Position.xy*vec2(18.+258*2,258.)*texelSize; gl_Position.xy = gl_Position.xy*2.-1.0; tempOffsets = R2_samples(frameCounter%10000); ambientUp = vec3(0.0); ambientDown = vec3(0.0); ambientLeft = vec3(0.0); ambientRight = vec3(0.0); ambientB = vec3(0.0); ambientF = vec3(0.0); avgSky = vec3(0.0); //Integrate sky light for each block side int maxIT = 20; for (int i = 0; i < maxIT; i++) { vec2 ij = R2_samples((frameCounter%1000)*maxIT+i); vec3 pos = normalize(rodSample(ij)); vec3 samplee = 1.72*skyFromTex(pos,colortex4).rgb/maxIT/150.; avgSky += samplee/1.72; ambientUp += samplee*(pos.y+abs(pos.x)/7.+abs(pos.z)/7.); ambientLeft += samplee*(clamp(-pos.x,0.0,1.0)+clamp(pos.y/7.,0.0,1.0)+abs(pos.z)/7.); ambientRight += samplee*(clamp(pos.x,0.0,1.0)+clamp(pos.y/7.,0.0,1.0)+abs(pos.z)/7.); ambientB += samplee*(clamp(pos.z,0.0,1.0)+abs(pos.x)/7.+clamp(pos.y/7.,0.0,1.0)); ambientF += samplee*(clamp(-pos.z,0.0,1.0)+abs(pos.x)/7.+clamp(pos.y/7.,0.0,1.0)); ambientDown += samplee*(clamp(pos.y/6.,0.0,1.0)+abs(pos.x)/7.+abs(pos.z)/7.); /* ambientUp += samplee*(pos.y); ambientLeft += samplee*(clamp(-pos.x,0.0,1.0)); ambientRight += samplee*(clamp(pos.x,0.0,1.0)); ambientB += samplee*(clamp(pos.z,0.0,1.0)); ambientF += samplee*(clamp(-pos.z,0.0,1.0)); ambientDown += samplee*(clamp(pos.y/6.,0.0,1.0))*0; */ } vec2 planetSphere = vec2(0.0); vec3 sky = vec3(0.0); vec3 skyAbsorb = vec3(0.0); float sunVis = clamp(sunElevation,0.0,0.05)/0.05*clamp(sunElevation,0.0,0.05)/0.05; float moonVis = clamp(-sunElevation,0.0,0.05)/0.05*clamp(-sunElevation,0.0,0.05)/0.05; zenithColor = calculateAtmosphere(vec3(0.0), vec3(0.0,1.0,0.0), vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,tempOffsets.x); skyAbsorb = vec3(0.0); vec3 absorb = vec3(0.0); sunColor = calculateAtmosphere(vec3(0.0), sunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.0); sunColor = sunColorBase/4000. * skyAbsorb; skyAbsorb = vec3(1.0); float dSun = 0.03; vec3 modSunVec = sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0); vec3 modSunVec2 = sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0); if (modSunVec2.y > modSunVec.y) modSunVec = modSunVec2; sunColorCloud = calculateAtmosphere(vec3(0.0), modSunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.); sunColorCloud = sunColorBase/4000. * skyAbsorb ; skyAbsorb = vec3(1.0); moonColor = calculateAtmosphere(vec3(0.0), -sunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.5); moonColor = moonColorBase/4000.0*skyAbsorb; skyAbsorb = vec3(1.0); modSunVec = -sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0); modSunVec2 = -sunVec*(1.0-dSun)+vec3(0.0,dSun,0.0); if (modSunVec2.y > modSunVec.y) modSunVec = modSunVec2; moonColorCloud = calculateAtmosphere(vec3(0.0), modSunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.5); moonColorCloud = moonColorBase/4000.0*0.55; // #ifndef CLOUDS_SHADOWS // sunColor *= (1.0-rainStrength*vec3(0.96,0.95,0.94)); // moonColor *= (1.0-rainStrength*vec3(0.96,0.95,0.94)); // #endif lightSourceColor = sunVis >= 1e-5 ? sunColor * sunVis : moonColor * moonVis; float lightDir = float( sunVis >= 1e-5)*2.0-1.0; //Fake bounced sunlight vec3 bouncedSun = lightSourceColor*0.1/5.0*0.5*clamp(lightDir*sunVec.y,0.0,1.0)*clamp(lightDir*sunVec.y,0.0,1.0); vec3 cloudAmbientSun = (sunColorCloud)*0.007; vec3 cloudAmbientMoon = (moonColorCloud)*0.007; ambientUp += bouncedSun*clamp(-lightDir*sunVec.y+4.,0.,4.0) + cloudAmbientSun*clamp(sunVec.y+2.,0.,4.0) + cloudAmbientMoon*clamp(-sunVec.y+2.,0.,4.0); ambientLeft += bouncedSun*clamp(lightDir*sunVec.x+4.,0.0,4.) + cloudAmbientSun*clamp(-sunVec.x+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(sunVec.x+2.,0.0,4.)*0.7; ambientRight += bouncedSun*clamp(-lightDir*sunVec.x+4.,0.0,4.) + cloudAmbientSun*clamp(sunVec.x+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(-sunVec.x+2.,0.0,4.)*0.7; ambientB += bouncedSun*clamp(-lightDir*sunVec.z+4.,0.0,4.) + cloudAmbientSun*clamp(sunVec.z+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(-sunVec.z+2.,0.0,4.)*0.7; ambientF += bouncedSun*clamp(lightDir*sunVec.z+4.,0.0,4.) + cloudAmbientSun*clamp(-sunVec.z+2.,0.0,4.)*0.7 + cloudAmbientMoon*clamp(sunVec.z+2.,0.0,4.)*0.7; ambientDown += bouncedSun*clamp(lightDir*sunVec.y+4.,0.0,4.)*0.7 + cloudAmbientSun*clamp(-sunVec.y+2.,0.0,4.)*0.5 + cloudAmbientMoon*clamp(sunVec.y+2.,0.0,4.)*0.5; avgSky += bouncedSun*5.; vec3 rainNightBoost = moonColorCloud*0.005; ambientUp += rainNightBoost; ambientLeft += rainNightBoost; ambientRight += rainNightBoost; ambientB += rainNightBoost; ambientF += rainNightBoost; ambientDown += rainNightBoost; avgSky += rainNightBoost; float avgLuma = 0.0; float m2 = 0.0; int n=100; vec2 clampedRes = max(1.0/texelSize,vec2(1920.0,1080.)); float avgExp = 0.0; float avgB = 0.0; vec2 resScale = vec2(1920.,1080.)/clampedRes*BLOOM_QUALITY; const int maxITexp = 50; float w = 0.0; for (int i = 0; i < maxITexp; i++){ vec2 ij = R2_samples((frameCounter%2000)*maxITexp+i); vec2 tc = 0.5 + (ij-0.5) * 0.7; vec3 sp = texture2D(colortex6,tc/16. * resScale+vec2(0.375*resScale.x+4.5*texelSize.x,.0)).rgb; avgExp += log(luma(sp)); avgB += log(min(dot(sp,vec3(0.07,0.22,0.71)),8e-2)); } avgExp = exp(avgExp/maxITexp); avgB = exp(avgB/maxITexp); avgBrightness = clamp(mix(avgExp,texelFetch2D(colortex4,ivec2(10,37),0).g,0.95),0.00003051757,65000.0); float L = max(avgBrightness,1e-8); float keyVal = 1.03-2.0/(log(L*4000/150.*8./3.0+1.0)/log(10.0)+2.0); float expFunc = 0.5+0.5*tanh(log(L)); float targetExposure = 0.18/log2(L*2.5+1.045)*0.62; avgL2 = clamp(mix(avgB,texelFetch2D(colortex4,ivec2(10,37),0).b,0.985),0.00003051757,65000.0); float targetrodExposure = max(0.012/log2(avgL2+1.002)-0.1,0.0)*1.2; exposure=max(targetExposure*EXPOSURE_MULTIPLIER, 0); float currCenterDepth = ld(texture2D(depthtex0, vec2(0.5)*RENDER_SCALE).r); centerDepth = mix(sqrt(texelFetch2D(colortex4,ivec2(14,37),0).g/65000.0), currCenterDepth, clamp(DoF_Adaptation_Speed*exp(-0.016/frameTime+1.0)/(6.0+currCenterDepth*far),0.0,1.0)); centerDepth = centerDepth * centerDepth * 65000.0; rodExposure = targetrodExposure; #ifndef AUTO_EXPOSURE exposure = Manual_exposure_value; rodExposure = clamp(log(Manual_exposure_value*2.0+1.0)-0.1,0.0,2.0); #endif }