vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } vec3 cosineHemisphereSample(vec2 Xi){ float theta = 2.0 * 3.14159265359 * Xi.y; float r = sqrt(Xi.x); float x = r * cos(theta); float y = r * sin(theta); return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.))); } vec3 TangentToWorld(vec3 N, vec3 H, float roughness){ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } vec2 SpiralSample( int samples, int totalSamples, float rotation, float Xi ){ Xi = max(Xi,0.0015); float alpha = float(samples + Xi) * (1.0 / float(totalSamples)); float theta = (2.0 *3.14159265359) * alpha * rotation; float r = sqrt(Xi); float x = r * sin(theta); float y = r * cos(theta); return vec2(x, y); } //////////////////////////////////////////////////////////////// ///////////////////////////// SSAO //////////////////////// //////////////////////////////////////////////////////////////// vec4 BilateralUpscale_SSAO(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){ ivec2 scaling = ivec2(1.0); ivec2 posDepth = ivec2(coord) * scaling; ivec2 posColor = ivec2(coord); ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1); ivec2 getRadius[4] = ivec2[]( ivec2(-2,-2), ivec2(-2, 0), ivec2( 0, 0), ivec2( 0,-2) ); // ivec2 getRadius3x3[8] = ivec2[]( // ivec2(-2,-2), // ivec2(-2, 0), // ivec2( 0, 0), // ivec2( 0,-2), // ivec2(-2,-1), // ivec2(-1,-2), // ivec2(0,-1), // ivec2(-1,0) // ); #ifdef DISTANT_HORIZONS float diffThreshold = 0.0005 ; #else float diffThreshold = 0.005; #endif vec4 RESULT = vec4(0.0); float SUM = 0.0; for (int i = 0; i < 4; i++) { ivec2 radius = getRadius[i]; #ifdef DISTANT_HORIZONS float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0); #else float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r); #endif float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5; RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES; SUM += EDGES; } // return vec4(1,1,1,1) * SUM/4; return RESULT / SUM; } vec2 SSAO( vec3 viewPos, vec3 normal, bool hand, bool leaves, float noise ){ if(hand) return vec2(1.0,0.0); int samples = 7; float occlusion = 0.0; float sss = 0.0; float dist = 1.0 + clamp(viewPos.z*viewPos.z/50.0,0,5); // shrink sample size as distance increases float mulfov2 = gbufferProjection[1][1]/(3 * dist); float maxR2 = viewPos.z*viewPos.z*mulfov2*2.*5/50.0; #ifdef Ambient_SSS float maxR2_2 = viewPos.z*viewPos.z*mulfov2*2.*2./50.0; float dist3 = clamp(1-exp( viewPos.z*viewPos.z / -50),0,1); if(leaves) maxR2_2 = mix(10, maxR2_2, dist3); #endif vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ; int n = 0; for (int i = 0; i < samples; i++) { // vec2 sampleOffset = SpiralSample(i, 7, 8, noise) * 0.2 * mulfov2; vec2 sampleOffset = SpiralSample(i, 7, 8, noise) * clamp(0.05 + i*0.095, 0.0,0.3) * mulfov2; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { #ifdef DISTANT_HORIZONS float dhdepth = texelFetch2D(dhDepthTex1, offset,0).x; #else float dhdepth = 0.0; #endif vec3 t0 = toScreenSpace_DH((offset*texelSize+acc+0.5*texelSize) * (1.0/RENDER_SCALE), texelFetch2D(depthtex1, offset,0).x, dhdepth); vec3 vec = (t0.xyz - viewPos); float dsquared = dot(vec, vec); if (dsquared > 1e-5){ if (dsquared < maxR2){ float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.); occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0); } #ifdef Ambient_SSS if(dsquared > maxR2_2){ float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.); sss += max((NdotV - (1.0-NdotV)) * clamp(1.0-maxR2_2/dsquared,0.0,1.0) ,0.0); } #endif n += 1; } } } return max(1.0 - vec2(occlusion, sss)/n, 0.0); } float ScreenSpace_SSS( vec3 viewPos, vec3 normal, bool hand, bool leaves, float noise ){ if(hand) return 0.0; int samples = 7; float occlusion = 0.0; float sss = 0.0; float dist = 1.0 + clamp(viewPos.z*viewPos.z/50.0,0,5); // shrink sample size as distance increases float mulfov2 = gbufferProjection[1][1]/(3 * dist); float maxR2_2 = viewPos.z*viewPos.z*mulfov2*2.*2./50.0; float dist3 = clamp(1-exp( viewPos.z*viewPos.z / -50),0,1); if(leaves) maxR2_2 = mix(10, maxR2_2, dist3); vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ; int n = 0; for (int i = 0; i < samples; i++) { vec2 sampleOffset = SpiralSample(i, 7, 8, noise) * 0.2 * mulfov2; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize, texelFetch2D(depthtex1, offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) ); vec3 vec = (t0.xyz - viewPos); float dsquared = dot(vec, vec); if (dsquared > 1e-5){ if(dsquared > maxR2_2){ float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.); sss += max((NdotV - (1.0-NdotV)) * clamp(1.0-maxR2_2/dsquared,0.0,1.0) ,0.0); } n += 1; } } } return max(1.0 - sss/n, 0.0); } //////////////////////////////////////////////////////////////////// ///////////////////////////// RTAO/SSGI //////////////////////// //////////////////////////////////////////////////////////////////// vec3 rayTrace_GI(vec3 dir,vec3 position,float dither, float quality){ vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = maxLengths.y; vec3 stepv = direction * mult / quality*vec3(RENDER_SCALE,1.0) * dither; vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ; spos.xy += TAA_Offset*texelSize*0.5/RENDER_SCALE; float biasdist = clamp(position.z*position.z/50.0,1,2); // shrink sample size as distance increases for(int i = 0; i < int(quality); i++){ spos += stepv; #ifdef UseQuarterResDepth float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0); #else float sp = linZ(texelFetch2D(depthtex1,ivec2(spos.xy/ texelSize),0).r); #endif float currZ = linZ(spos.z); if( sp < currZ) { float dist = abs(sp-currZ)/currZ; if (abs(dist) < biasdist*0.05) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0); } spos += stepv; } return vec3(1.1); } float convertHandDepth_3(in float depth, bool hand) { if(!hand) return depth; float ndcDepth = depth * 2.0 - 1.0; ndcDepth /= MC_HAND_DEPTH; return ndcDepth * 0.5 + 0.5; } vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes, bool hand){ float dist = 1.0 + clamp(position.z*position.z,0,2); // shrink sample size as distance increases float stepSize = stepsizes / dist; int maxSteps = STEPS; vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ? (-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far; vec3 end = toClipSpace3(position+dir*rayLength) ; vec3 direction = end-clipPosition ; //convert to clip space float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize; //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0; vec3 stepv = direction/len; int iterations = min(int(min(len, mult*len)-2), maxSteps); //Do one iteration for closest texel (good contact shadows) vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ; spos.xy += TAA_Offset*texelSize*0.5*RENDER_SCALE; spos += stepv/(stepSize/2); float distancered = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases for(int i = 0; i < iterations; i++){ if (spos.x < 0.0 || spos.y < 0.0 || spos.z < 0.0 || spos.x > 1.0 || spos.y > 1.0 || spos.z > 1.0) return vec3(1.1); spos += stepv*noise; #ifdef UseQuarterResDepth float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/ texelSize/4),0).w/65000.0); #else float sp = linZ(texelFetch2D(depthtex1,ivec2(spos.xy/ texelSize),0).r); #endif float currZ = linZ(spos.z); if( sp < currZ) { float dist = abs(sp-currZ)/currZ; if (dist <= mix(0.5, 0.1, clamp(position.z*position.z - 0.1,0,1))) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0); } } return vec3(1.1); } void ApplySSRT( inout vec3 lighting, vec3 viewPos, vec3 normal, vec3 noise, vec3 playerPos, vec3 lpvPos, float Exposure, vec2 lightmaps, vec3 skylightcolor, vec3 torchcolor, bool isGrass, bool hand ){ int nrays = RAY_COUNT; vec3 radiance = vec3(0.0); vec3 occlusion = vec3(0.0); vec3 skycontribution = vec3(0.0); vec3 occlusion2 = vec3(0.0); vec3 skycontribution2 = vec3(0.0); // rgb = torch color * lightmap. a = sky lightmap. vec4 Lighting = RT_AmbientLight(playerPos, lpvPos, Exposure, lightmaps, torchcolor); // skylightcolor = skylightcolor * ambient_brightness * Lighting.a; skylightcolor = max(skylightcolor * ambient_brightness * Lighting.a, vec3(1.0) * (MIN_LIGHT_AMOUNT*0.01 + nightVision)); for (int i = 0; i < nrays; i++){ int seed = (frameCounter%40000)*nrays+i; vec2 ij = fract(R2_samples(seed) + noise.xy); vec3 rayDir = TangentToWorld(normal, normalize(cosineHemisphereSample(ij)) ,1.0); #ifdef HQ_SSGI vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, viewPos, noise.z, 50.); // ssr rt #else vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, viewPos, noise.z, 30., hand); // choc sspt #endif #ifdef SKY_CONTRIBUTION_IN_SSRT #ifdef OVERWORLD_SHADER if(isGrass) rayDir.y = clamp(rayDir.y + 0.5,-1,1); // rayDir.y = mix(-1.0, rayDir.y, lightmaps.y*lightmaps.y); skycontribution = ((skyCloudsFromTexLOD(rayDir, colortex4, 0).rgb / 30.0) * 2.5 * ambient_brightness) * Lighting.a + skylightcolor*(1-Lighting.a) + Lighting.rgb; #else skycontribution = ((skyCloudsFromTexLOD2(rayDir, colortex4, 6).rgb / 30.0) * 2.5 * ambient_brightness) * Lighting.a + skylightcolor*(1-Lighting.a) + Lighting.rgb; #endif #else #ifdef OVERWORLD_SHADER if(isGrass) rayDir.y = clamp(rayDir.y + 0.25,-1,1); #endif skycontribution = skylightcolor * (max(rayDir.y,pow(1.0-lightmaps.y,2))*0.95+0.05) + Lighting.rgb; #if indirect_effect == 4 skycontribution2 = skylightcolor + Lighting.rgb; #endif #endif if (rayHit.z < 1.){ #if indirect_effect == 4 vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0){ radiance += texture2D(colortex5, previousPosition.xy).rgb * GI_Strength + skycontribution; } else{ radiance += skycontribution; } #else radiance += skycontribution; #endif occlusion += skycontribution * GI_Strength; #if indirect_effect == 4 occlusion2 += skycontribution2 * GI_Strength; #endif } else { radiance += skycontribution; } } occlusion *= AO_Strength; #if indirect_effect == 4 lighting = max(radiance/nrays - max(occlusion, occlusion2*0.5)/nrays, 0.0); #else lighting = max(radiance/nrays - occlusion/nrays, 0.0); #endif if(hand) lighting = skylightcolor/1.5; }