// #version 120 //#extension GL_EXT_gpu_shader4 : disable varying vec4 lmtexcoord; varying vec4 color; varying vec4 normalMat; varying vec3 binormal; uniform sampler2D normals; varying vec3 tangent; varying vec4 tangent_other; varying vec3 viewVector; #include "/lib/settings.glsl" #include "/lib/res_params.glsl" uniform sampler2D texture; uniform sampler2D noisetex; uniform sampler2DShadow shadow; // uniform sampler2D gaux2; uniform sampler2D gaux1; uniform sampler2D depthtex1; uniform sampler2D colortex5; uniform vec3 sunVec; uniform float frameTimeCounter; uniform float lightSign; uniform float near; uniform float far; uniform float moonIntensity; uniform float sunIntensity; uniform vec3 sunColor; uniform vec3 nsunColor; uniform vec3 upVec; uniform float sunElevation; uniform float fogAmount; uniform vec2 texelSize; uniform float rainStrength; uniform float skyIntensityNight; uniform float skyIntensity; flat varying vec3 WsunVec; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; uniform int framemod8; uniform sampler2D specular; uniform int frameCounter; uniform int isEyeInWater; flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon) flat varying vec3 avgAmbient; #include "/lib/color_transforms.glsl" #include "/lib/projections.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/waterBump.glsl" #define END #define NETHER #include "/lib/diffuse_lighting.glsl" const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), vec2(-1.,3.)/8., vec2(5.0,1.)/8., vec2(-3,-5.)/8., vec2(-5.,5.)/8., vec2(-7.,-1.)/8., vec2(3,7.)/8., vec2(7.,-7.)/8.); float interleaved_gradientNoise(float temporal){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+temporal); return noise; } vec3 srgbToLinear2(vec3 srgb){ return mix( srgb / 12.92, pow(.947867 * srgb + .0521327, vec3(2.4) ), step( .04045, srgb ) ); } vec3 blackbody2(float Temp) { float t = pow(Temp, -1.5); float lt = log(Temp); vec3 col = vec3(0.0); col.x = 220000.0 * t + 0.58039215686; col.y = 0.39231372549 * lt - 2.44549019608; col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y; col.z = 0.76078431372 * lt - 5.68078431373; col = clamp(col,0.0,1.0); col = Temp < 1000. ? col * Temp * 0.001 : col; return srgbToLinear2(col); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 nvec3(vec4 pos){ return pos.xyz/pos.w; } vec4 nvec4(vec3 pos){ return vec4(pos.xyz, 1.0); } vec3 rayTrace(vec3 dir,vec3 position,float dither, float fresnel, bool inwater){ float quality = mix(15,SSR_STEPS,fresnel); vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z); vec3 stepv = direction * mult / quality; vec3 spos = clipPosition + stepv*dither; float minZ = clipPosition.z; float maxZ = spos.z+stepv.z*0.5; spos.xy += offsets[framemod8]*texelSize*0.5; float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases for (int i = 0; i <= int(quality); i++) { // decode depth buffer float sp = texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).x; if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ) ) return vec3(spos.xy,sp); spos += stepv; //small bias float biasamount = 0.0002 / dist; minZ = maxZ-biasamount / ld(spos.z); maxZ += stepv.z; } return vec3(1.1); } float facos(float sx){ float x = clamp(abs( sx ),0.,1.); float a = sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 ); return sx > 0. ? a : pi - a; } float bayer2(vec2 a){ a = floor(a); return fract(dot(a,vec2(0.5,a.y*0.75))); } float cdist(vec2 coord) { return max(abs(coord.s-0.5),abs(coord.t-0.5))*2.0; } #define PW_DEPTH 1.0 //[0.5 1.0 1.5 2.0 2.5 3.0] #define PW_POINTS 1 //[2 4 6 8 16 32] #define bayer4(a) (bayer2( .5*(a))*.25+bayer2(a)) #define bayer8(a) (bayer4( .5*(a))*.25+bayer2(a)) #define bayer16(a) (bayer8( .5*(a))*.25+bayer2(a)) #define bayer32(a) (bayer16(.5*(a))*.25+bayer2(a)) #define bayer64(a) (bayer32(.5*(a))*.25+bayer2(a)) #define bayer128(a) fract(bayer64(.5*(a))*.25+bayer2(a)) vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) { float waveZ = mix(20.0,0.25,iswater); float waveM = mix(0.0,4.0,iswater); vec3 parallaxPos = posxz; vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH; float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) ; parallaxPos.xz += waterHeight * vec; return parallaxPos; } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort) { float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * nbRot * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } //Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/ vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } vec4 hash44(vec4 p4) { p4 = fract(p4 * vec4(.1031, .1030, .0973, .1099)); p4 += dot(p4, p4.wzxy+33.33); return fract((p4.xxyz+p4.yzzw)*p4.zywx); } vec3 TangentToWorld(vec3 N, vec3 H) { vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } float GGX (vec3 n, vec3 v, vec3 l, float r, float F0) { r*=r;r*=r; vec3 h = l + v; float hn = inversesqrt(dot(h, h)); float dotLH = clamp(dot(h,l)*hn,0.,1.); float dotNH = clamp(dot(h,n)*hn,0.,1.); float dotNL = clamp(dot(n,l),0.,1.); float dotNHsq = dotNH*dotNH; float denom = dotNHsq * r - dotNHsq + 1.; float D = r / (3.141592653589793 * denom * denom); float F = F0 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH); float k2 = .25 * r; return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2); } vec3 applyBump(mat3 tbnMatrix, vec3 bump){ float bumpmult = 1.0; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); return normalize(bump*tbnMatrix); } #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float triangularize(float dither) { float center = dither*2.0-1.0; dither = center*inversesqrt(abs(center)); return clamp(dither-fsign(center),0.0,1.0); } vec3 fp10Dither(vec3 color,float dither){ const vec3 mantissaBits = vec3(6.,6.,5.); vec3 exponent = floor(log2(color)); return color + dither*exp2(-mantissaBits)*exp2(exponent); } float R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ; } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy + (frameCounter%40000); // vec2 coord = gl_FragCoord.xy + frameTimeCounter; // vec2 coord = gl_FragCoord.xy; float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) ); return noise ; } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } float encodeVec2(float x,float y){ return encodeVec2(vec2(x,y)); } vec3 viewToWorld(vec3 viewPosition) { vec4 pos; pos.xyz = viewPosition; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } vec4 encode (vec3 n, vec2 lightmaps){ n.xy = n.xy / dot(abs(n), vec3(1.0)); n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy; vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0); return vec4(encn,vec2(lightmaps.x,lightmaps.y)); } float square(float x){ return x*x; } float gSimple(float dp, float roughness){ float k = roughness + 1; k *= k/8.0; return dp / (dp * (1.0-k) + k); } vec3 GGX2_2(vec3 n, vec3 v, vec3 l, float r, vec3 F0) { float alpha = square(r) + 1e-4; // when roughness is zero it fucks up vec3 h = normalize(l + v) ; float dotNH = clamp(dot(h,n),0.,1.); float dotVH = clamp(dot(h,v),0.,1.); float D = alpha / (2.2 * square( (dotNH * alpha - 1.0) * square(dotNH) + 1.0) ); vec3 F = F0 + (1. - F0) * pow(clamp(1.0 - dotVH,0.0,1.0),5.0); return F * D; } // float SunGGX(vec3 n, vec3 v, vec3 l, float Roughness, float F0){ // vec3 h = normalize(l + v) ; // float dotNH = clamp(dot(h,n),0.,1.); // float dotVH = clamp(dot(h,v),0.,1.); // float alpha =max(square(Roughness),1e-4) ; // float WallFresnel = F0 + (1. - F0) * pow(clamp(1.0 - dotVH,0.0,1.0),5.0); // float Sun = square( dotNH - pow(alpha,1.5) - 1.0); // float Final = ((alpha / (10.0 * Sun + 1e-4)) * WallFresnel); // return Final ; // } float SunGGX(vec3 n, vec3 v, vec3 l, float roughness,float F0, float fresnel){ float alpha = square(roughness) + 1e-4; // when roughness is zero it fucks up vec3 h = normalize(l + v) * mix(1.000, 1.0025, pow(fresnel,2) ); float dotLH = clamp(dot(h,l),0.,1.); float dotNH = clamp(dot(h,n),0.,1.); float dotNL = clamp(dot(n,l),0.,1.); float dotNV = clamp(dot(n,v),0.,1.); float dotVH = clamp(dot(h,v),0.,1.); float D = alpha / (0.0541592653589793*square(square(dotNH) * (alpha - 1.0) + 1.0)); float G = gSimple(dotNV, roughness) * gSimple(dotNL, roughness); float F = F0 + (1. - F0) * exp2((-5.55473*dotVH-6.98316)*dotVH); return dotNL * F * (G * D / (4 * dotNV * dotNL + 1e-7)); } vec3 normVec (vec3 vec){ return vec*inversesqrt(dot(vec,vec)); } float getWaterHeightmap_dimension(vec2 posxz, float waveM, float waveZ, float iswater) { // water waves vec2 movement = vec2(frameTimeCounter*0.01); vec2 pos = posxz ; float caustic = 1.0; float weightSum = 0.0; float radiance = 2.39996; mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance))); for (int i = 0; i < 3; i++){ pos = rotationMatrix * pos ; float Waves = texture2D(noisetex, pos / 64.0 + movement).b; caustic += exp2(pow(Waves,3.0) * -5.0); weightSum += exp2(-(3.0-caustic)); } return ((3.0-caustic) * weightSum / (30.0 * 3.0)); } vec3 getWaveHeightmap_dimension(vec2 posxz, float iswater){ vec2 coord = posxz; float deltaPos = 0.25; float waveZ = mix(20.0,0.25,iswater); float waveM = mix(0.0,4.0,iswater); float h0 = getWaterHeightmap_dimension(coord, waveM, waveZ, iswater); float h1 = getWaterHeightmap_dimension(coord + vec2(deltaPos,0.0), waveM, waveZ, iswater); float h3 = getWaterHeightmap_dimension(coord + vec2(0.0,deltaPos), waveM, waveZ, iswater); float xDelta = ((h1-h0))/deltaPos*2.; float yDelta = ((h3-h0))/deltaPos*2.; vec3 wave = normalize(vec3(xDelta,yDelta,1.0-pow(abs(xDelta+yDelta),2.0))); return wave; } //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// /* RENDERTARGETS:2,7,1,11,13,14 */ void main() { if (gl_FragCoord.x * texelSize.x < 1 && gl_FragCoord.y * texelSize.y < 1 ) { gl_FragData[0] = texture2D(texture, lmtexcoord.xy,Texture_MipMap_Bias)*color; vec3 Albedo = toLinear(gl_FragData[0].rgb); float iswater = normalMat.w; #ifdef HAND iswater = 0.1; #endif #ifndef Vanilla_like_water if (iswater > 0.9) { Albedo = vec3(0.0); gl_FragData[0] = vec4(vec3(0.0),1.0/255.0); } #endif #ifdef Vanilla_like_water if (iswater > 0.5) { gl_FragData[0].a = luma(Albedo.rgb); Albedo = color.rgb; } #endif // gl_FragData[4] = vec4(Albedo, gl_FragData[0].a); vec2 tempOffset=offsets[framemod8]; vec3 fragC = gl_FragCoord.xyz*vec3(texelSize,1.0); vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0)); vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 np3 = normVec(p3); vec3 normal = normalMat.xyz; vec3 WaterNormals; vec3 TranslucentNormals; mat3 tbnMatrix = mat3(tangent.x, binormal.x, normal.x, tangent.y, binormal.y, normal.y, tangent.z, binormal.z, normal.z); if (iswater > 0.4){ float bumpmult = 1.; vec3 posxz = p3+cameraPosition; posxz.xz-=posxz.y; vec3 bump; posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*fragpos)); bump = normalize(getWaveHeightmap_dimension(posxz.xz,iswater)); WaterNormals = bump; // tangent space normals for refraction bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); normal = normalize(bump * tbnMatrix); }else{ vec3 normalTex = texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).rgb; normalTex.xy = normalTex.xy*2.0-1.0; normalTex.z = clamp(sqrt(1.0 - dot(normalTex.xy, normalTex.xy)),0.0,1.0); TranslucentNormals = normalTex; normal = applyBump(tbnMatrix,normalTex); } TranslucentNormals += WaterNormals; vec4 data0 = vec4(1); vec4 data1 = clamp( encode(TranslucentNormals, lmtexcoord.zw),0.0,1.0); gl_FragData[3] = vec4(encodeVec2(data0.x,data1.x), encodeVec2(data0.y,data1.y), encodeVec2(data0.z,data1.z), encodeVec2(data1.w,data0.w)); gl_FragData[5] = vec4(encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a)); vec3 Indirect_lighting = DoAmbientLighting_Nether(gl_Fog.color.rgb, vec3(TORCH_R,TORCH_G,TORCH_B), lmtexcoord.z, viewToWorld(normal), np3, p3 + cameraPosition); vec3 FinalColor = Indirect_lighting * Albedo; #ifdef Glass_Tint float alphashit = min(pow(gl_FragData[0].a,2.0),1.0); FinalColor *= alphashit; #endif vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg; SpecularTex = iswater > 0.0 && SpecularTex.r > 0.0 && SpecularTex.g < 0.9 ? SpecularTex : vec2(1.0,0.02); if (iswater > 0.0 || (SpecularTex.g > 0.0 || SpecularTex.r > 0.0)){ vec3 Reflections_Final = vec3(0.0); float roughness = pow(1.0-SpecularTex.r,2.0); float f0 = SpecularTex.g; float F0 = f0; float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1); vec3 reflectedVector = reflect(normalize(fragpos), normal); float normalDotEye = dot(normal, normalize(fragpos)); float fresnel = pow(clamp(1.0 + normalDotEye,0.0,1.0), 5.0); // snells window looking thing if(isEyeInWater == 1 && iswater > 0.99) fresnel = clamp(pow(1.66 + normalDotEye,25),0.02,1.0); fresnel = F0 + (1.0 - F0) * fresnel; vec4 Reflections = vec4(0.0); if(iswater > 0){ #ifdef SCREENSPACE_REFLECTIONS vec3 rtPos = rayTrace(reflectedVector,fragpos.xyz, interleaved_gradientNoise(), fresnel, isEyeInWater == 1); if (rtPos.z < 1.){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) { Reflections.a = 1.0; Reflections.rgb = texture2D(colortex5,previousPosition.xy).rgb; } } #endif } Reflections_Final = mix(FinalColor, Reflections.rgb, Reflections.a * fresnel * visibilityFactor); float F2 = pow(clamp(1.0 + normalDotEye,0.0,1.0),pow(1.0-roughness,2.0) * 1.5 + 0.5); F2 = mix(f0, 1.0, F2); Reflections_Final += mix( gl_Fog.color.rgb * 0.25, vec3(0.0), Reflections.a * visibilityFactor) ; gl_FragData[0].rgb = Reflections_Final; //correct alpha channel with fresnel float alpha0 = gl_FragData[0].a; gl_FragData[0].a = -gl_FragData[0].a*fresnel+gl_FragData[0].a+fresnel; if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.); } else { gl_FragData[0].rgb = FinalColor; } #ifndef HAND gl_FragData[1] = vec4(Albedo,iswater); #endif } }