#include "/lib/settings.glsl" // #if defined END_SHADER || defined NETHER_SHADER // #undef IS_LPV_ENABLED // #endif #ifdef IS_LPV_ENABLED #extension GL_EXT_shader_image_load_store: enable #extension GL_ARB_shading_language_packing: enable #endif #include "/lib/res_params.glsl" varying vec4 lmtexcoord; varying vec4 color; flat varying float exposure; #ifdef LINES flat varying int SELECTION_BOX; #endif #ifdef OVERWORLD_SHADER const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #ifdef TRANSLUCENT_COLORED_SHADOWS uniform sampler2D shadowcolor0; uniform sampler2DShadow shadowtex0; uniform sampler2DShadow shadowtex1; #endif flat varying vec3 WsunVec; flat varying vec3 averageSkyCol_Clouds; flat varying vec4 lightCol; #endif uniform int isEyeInWater; uniform sampler2D texture; uniform sampler2D noisetex; uniform sampler2D colortex4; #ifdef IS_LPV_ENABLED uniform usampler1D texBlockData; uniform sampler3D texLpv1; uniform sampler3D texLpv2; #endif uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferModelViewInverse; uniform mat4 gbufferModelView; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform vec3 cameraPosition; uniform float frameTimeCounter; #include "/lib/Shadow_Params.glsl" uniform vec2 texelSize; uniform ivec2 eyeBrightnessSmooth; uniform float rainStrength; uniform float nightVision; flat varying float HELD_ITEM_BRIGHTNESS; #include "/lib/util.glsl" #ifdef OVERWORLD_SHADER #ifdef Daily_Weather flat varying vec4 dailyWeatherParams0; flat varying vec4 dailyWeatherParams1; #else vec4 dailyWeatherParams0 = vec4(CloudLayer0_coverage, CloudLayer1_coverage, CloudLayer2_coverage, 0.0); vec4 dailyWeatherParams1 = vec4(CloudLayer0_density, CloudLayer1_density, CloudLayer2_density, 0.0); #endif #define CLOUDSHADOWSONLY #include "/lib/volumetricClouds.glsl" #endif #ifdef IS_LPV_ENABLED uniform int heldItemId; uniform int heldItemId2; uniform int frameCounter; #include "/lib/hsv.glsl" #include "/lib/lpv_common.glsl" #include "/lib/lpv_render.glsl" #endif #include "/lib/diffuse_lighting.glsl" #include "/lib/sky_gradient.glsl" vec3 toLinear(vec3 sRGB){ return sRGB * (sRGB * (sRGB * 0.305306011 + 0.682171111) + 0.012522878); } // #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } uniform int framemod8; #include "/lib/TAA_jitter.glsl" //Mie phase function float phaseg(float x, float g){ float gg = g * g; return (gg * -0.25 + 0.25) * pow(-2.0 * (g * x) + (gg + 1.0), -1.5) / 3.14; } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } float encodeVec2(float x,float y){ return encodeVec2(vec2(x,y)); } // #undef BASIC_SHADOW_FILTER #ifdef OVERWORLD_SHADER float ComputeShadowMap(inout vec3 directLightColor, vec3 playerPos, float maxDistFade){ if(maxDistFade <= 0.0) return 1.0; // setup shadow projection vec3 projectedShadowPosition = mat3(shadowModelView) * playerPos + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; // un-distort #ifdef DISTORT_SHADOWMAP float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; #else float distortFactor = 1.0; #endif // hamburger projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5); float shadowmap = 0.0; vec3 translucentTint = vec3(0.0); #ifdef TRANSLUCENT_COLORED_SHADOWS // determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z) * 2.0,0.0,1.0),2.0); // get opaque shadow data to get opaque data from translucent shadows. float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x; shadowmap += max(opaqueShadow, shadowDepthDiff); // get translucent shadow data vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy); // this curve simply looked the nicest. it has no other meaning. float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2); // normalize the color to remove luminance, and keep the hue. remove all opaque color. // mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster. translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * shadowAlpha; // make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0 translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff); #else shadowmap += shadow2D(shadow, projectedShadowPosition).x; #endif #ifdef TRANSLUCENT_COLORED_SHADOWS // tint the lightsource color with the translucent shadow color directLightColor *= mix(vec3(1.0), translucentTint.rgb, maxDistFade); #endif return mix(1.0, shadowmap, maxDistFade); } #endif #if defined DAMAGE_BLOCK_EFFECT && defined POM #extension GL_ARB_shader_texture_lod : enable mat3 inverseMatrix(mat3 m) { float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2]; float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2]; float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2]; float b01 = a22 * a11 - a12 * a21; float b11 = -a22 * a10 + a12 * a20; float b21 = a21 * a10 - a11 * a20; float det = a00 * b01 + a01 * b11 + a02 * b21; return mat3(b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11), b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10), b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) / det; } const float MAX_OCCLUSION_DISTANCE = MAX_DIST; const float MIX_OCCLUSION_DISTANCE = MAX_DIST*0.9; const int MAX_OCCLUSION_POINTS = MAX_ITERATIONS; varying vec4 vtexcoordam; // .st for add, .pq for mul varying vec4 vtexcoord; vec2 dcdx = dFdx(vtexcoord.st*vtexcoordam.pq)*exp2(Texture_MipMap_Bias); vec2 dcdy = dFdy(vtexcoord.st*vtexcoordam.pq)*exp2(Texture_MipMap_Bias); #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) uniform mat4 gbufferProjection; vec3 toClipSpace3(vec3 viewSpacePosition) { return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5; } flat varying vec3 WsunVec2; const float mincoord = 1.0/4096.0; const float maxcoord = 1.0-mincoord; uniform sampler2D normals; varying vec4 tangent; varying vec4 normalMat; vec4 readNormal(in vec2 coord) { return texture2DGradARB(normals,fract(coord)*vtexcoordam.pq+vtexcoordam.st,dcdx,dcdy); } vec4 readTexture(in vec2 coord) { return texture2DGradARB(texture,fract(coord)*vtexcoordam.pq+vtexcoordam.st,dcdx,dcdy); } #endif uniform float near; // uniform float far; float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec4 texture2D_POMSwitch( sampler2D sampler, vec2 lightmapCoord, vec4 dcdxdcdy ){ return texture2DGradARB(sampler, lightmapCoord, dcdxdcdy.xy, dcdxdcdy.zw); } uniform vec3 eyePosition; //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// #ifdef DAMAGE_BLOCK_EFFECT /* RENDERTARGETS:11 */ #else /* DRAWBUFFERS:29 */ #endif void main() { #ifdef DAMAGE_BLOCK_EFFECT vec2 adjustedTexCoord = lmtexcoord.xy; #ifdef POM vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(0.0)); vec3 worldpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition; vec3 normal = normalMat.xyz; vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w); mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x, tangent.y, tangent2.y, normal.y, tangent.z, tangent2.z, normal.z); adjustedTexCoord = fract(vtexcoord.st)*vtexcoordam.pq+vtexcoordam.st; vec3 viewVector = normalize(tbnMatrix*fragpos); float dist = length(fragpos); float maxdist = MAX_OCCLUSION_DISTANCE; // float depth = gl_FragCoord.z; if (dist < maxdist) { float depthmap = readNormal(vtexcoord.st).a; float used_POM_DEPTH = 1.0; if ( viewVector.z < 0.0 && depthmap < 0.9999 && depthmap > 0.00001) { #ifdef Adaptive_Step_length vec3 interval = (viewVector.xyz /-viewVector.z/MAX_OCCLUSION_POINTS * POM_DEPTH) * clamp(1.0-pow(depthmap,2),0.1,1.0); used_POM_DEPTH = 1.0; #else vec3 interval = viewVector.xyz/-viewVector.z/ MAX_OCCLUSION_POINTS*POM_DEPTH; #endif vec3 coord = vec3(vtexcoord.st, 1.0); coord += interval * used_POM_DEPTH; float sumVec = 0.5; for (int loopCount = 0; (loopCount < MAX_OCCLUSION_POINTS) && (1.0 - POM_DEPTH + POM_DEPTH * readNormal(coord.st).a ) < coord.p && coord.p >= 0.0; ++loopCount) { coord = coord + interval * used_POM_DEPTH; sumVec += used_POM_DEPTH; } if (coord.t < mincoord) { if (readTexture(vec2(coord.s,mincoord)).a == 0.0) { coord.t = mincoord; discard; } } adjustedTexCoord = mix(fract(coord.st)*vtexcoordam.pq+vtexcoordam.st, adjustedTexCoord, max(dist-MIX_OCCLUSION_DISTANCE,0.0)/(MAX_OCCLUSION_DISTANCE-MIX_OCCLUSION_DISTANCE)); // vec3 truePos = fragpos + sumVec*inverseMatrix(tbnMatrix)*interval; // depth = toClipSpace3(truePos).z; } } vec4 Albedo = texture2D_POMSwitch(texture, adjustedTexCoord.xy, vec4(dcdx,dcdy)); #else vec4 Albedo = texture2D(texture, adjustedTexCoord.xy); #endif Albedo.rgb = toLinear(Albedo.rgb); if(dot(Albedo.rgb, vec3(0.33333)) < 1.0/255.0 || Albedo.a < 0.01 ) { discard; return; } gl_FragData[0] = vec4(encodeVec2(vec2(0.5)), encodeVec2(Albedo.rg), encodeVec2(vec2(Albedo.b,0.02)), 1.0); #endif #if !defined DAMAGE_BLOCK_EFFECT #ifdef LINES #ifndef SELECT_BOX if(SELECTION_BOX > 0) discard; #endif #endif vec2 tempOffset = offsets[framemod8]; vec3 viewPos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0)); vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos; vec3 feetPlayerPos_normalized = normalize(feetPlayerPos); vec4 TEXTURE = texture2D(texture, lmtexcoord.xy)*color; #ifdef WhiteWorld TEXTURE.rgb = vec3(0.5); #endif vec3 Albedo = toLinear(TEXTURE.rgb); vec2 lightmap = clamp(lmtexcoord.zw,0.0,1.0); #ifndef OVERWORLD_SHADER lightmap.y = 1.0; #endif #if defined Hand_Held_lights && !defined LPV_ENABLED #ifdef IS_IRIS vec3 playerCamPos = eyePosition; #else vec3 playerCamPos = cameraPosition; #endif // lightmap.x = max(lightmap.x, HELD_ITEM_BRIGHTNESS * clamp( pow(max(1.0-length((feetPlayerPos+cameraPosition) - playerCamPos)/HANDHELD_LIGHT_RANGE,0.0),1.5),0.0,1.0)); if(HELD_ITEM_BRIGHTNESS > 0.0){ float pointLight = clamp(1.0-length((feetPlayerPos+cameraPosition)-playerCamPos)/HANDHELD_LIGHT_RANGE,0.0,1.0); lightmap.x = mix(lightmap.x, HELD_ITEM_BRIGHTNESS, pointLight*pointLight); } #endif #ifdef WEATHER gl_FragData[1] = vec4(0.0,0.0,0.0,TEXTURE.a); // for bloomy rain and stuff #endif #ifndef WEATHER #ifndef LINES gl_FragData[0].a = TEXTURE.a; #else gl_FragData[0].a = 1.0; #endif #ifndef BLOOMY_PARTICLES gl_FragData[1].a = 0.0; // for bloomy rain and stuff #endif vec3 Direct_lighting = vec3(0.0); vec3 directLightColor = vec3(0.0); vec3 Indirect_lighting = vec3(0.0); vec3 AmbientLightColor = vec3(0.0); vec3 Torch_Color = vec3(TORCH_R,TORCH_G,TORCH_B); vec3 MinimumLightColor = vec3(1.0); if(isEyeInWater == 1) MinimumLightColor = vec3(10.0); if(lightmap.x >= 0.9) Torch_Color *= LIT_PARTICLE_BRIGHTNESS; #ifdef OVERWORLD_SHADER directLightColor = lightCol.rgb/2400.0; float Shadows = 1.0; vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz; float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(shadowPlayerPos) / (shadowDistance+16),0.0)*5.0,1.0)); float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(shadowPlayerPos) / (shadowDistance+11),0.0)*5.0,1.0)); float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0); Shadows = ComputeShadowMap(directLightColor, shadowPlayerPos, shadowMapFalloff); Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff2); #ifdef CLOUDS_SHADOWS Shadows *= GetCloudShadow(feetPlayerPos+cameraPosition, WsunVec); #endif Direct_lighting = directLightColor * Shadows; #ifndef LINES Direct_lighting *= phaseg(clamp(dot(feetPlayerPos_normalized, WsunVec),0.0,1.0), 0.65)*2 + 0.5; #endif AmbientLightColor = averageSkyCol_Clouds / 900.0; #ifdef IS_IRIS AmbientLightColor *= 2.5; #else AmbientLightColor *= 0.5; #endif Indirect_lighting = doIndirectLighting(AmbientLightColor, MinimumLightColor, lightmap.y); #endif #ifdef NETHER_SHADER Indirect_lighting = volumetricsFromTex(vec3(0.0,1.0,0.0), colortex4, 6).rgb / 1200.0; #endif #ifdef END_SHADER Indirect_lighting = vec3(0.3,0.6,1.0) * 0.1; #endif ///////////////////////// BLOCKLIGHT LIGHTING OR LPV LIGHTING OR FLOODFILL COLORED LIGHTING #ifdef IS_LPV_ENABLED vec3 lpvPos = GetLpvPosition(feetPlayerPos); #else const vec3 lpvPos = vec3(0.0); #endif Indirect_lighting += doBlockLightLighting( vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, exposure, feetPlayerPos, lpvPos); #ifdef LINES gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * toLinear(color.rgb); if(SELECTION_BOX > 0) gl_FragData[0].rgba = vec4(toLinear(vec3(SELECT_BOX_COL_R, SELECT_BOX_COL_G, SELECT_BOX_COL_B)), 1.0); #else gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * Albedo; #endif // distance fade targeting the world border... if(TEXTURE.a < 0.7 && TEXTURE.a > 0.2) gl_FragData[0] *= clamp(1.0 - length(feetPlayerPos) / 100.0 ,0.0,1.0); gl_FragData[0].rgb *= 0.1; #endif #endif }