#version 120 //#extension GL_EXT_gpu_shader4 : disable #include "/lib/settings.glsl" //Prepares sky textures (2 * 256 * 256), computes light values and custom lightmaps #define ReflectedFog flat varying vec3 averageSkyCol_Clouds; flat varying vec3 averageSkyCol; flat varying vec3 lightSourceColor; flat varying vec3 sunColor; flat varying vec3 moonColor; flat varying vec3 zenithColor; flat varying float avgL2; flat varying vec2 tempOffsets; flat varying float exposure; flat varying float rodExposure; flat varying float avgBrightness; flat varying float centerDepth; // uniform sampler2D colortex4; uniform sampler2D noisetex; uniform sampler2DShadow shadow; uniform int frameCounter; uniform float rainStrength; uniform float eyeAltitude; uniform vec3 sunVec; flat varying vec3 WsunVec; uniform vec2 texelSize; uniform float frameTimeCounter; uniform mat4 gbufferProjection; uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferPreviousProjection; uniform mat4 gbufferModelViewInverse; uniform mat4 gbufferModelView; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform float sunElevation; uniform vec3 cameraPosition; uniform float far; uniform ivec2 eyeBrightnessSmooth; #include "/lib/Shadow_Params.glsl" #include "/lib/util.glsl" #include "/lib/ROBOBO_sky.glsl" #include "/lib/sky_gradient.glsl" // uniform int worldTime; #define TIMEOFDAYFOG #include "/lib/volumetricClouds.glsl" // #include "/lib/biome_specifics.glsl" vec3 toShadowSpaceProjected(vec3 p3){ p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz; p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz; return p3; } float R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y + 1.0/1.6180339887 * frameCounter)); return noise; } vec4 lightCol = vec4(lightSourceColor, float(sunElevation > 1e-5)*2-1.); float luma(vec3 color) { return dot(color,vec3(0.299, 0.587, 0.114)); } #include "/lib/volumetricFog.glsl" const float[17] Slightmap = float[17](14.0,17.,19.0,22.0,24.0,28.0,31.0,40.0,60.0,79.0,93.0,110.0,132.0,160.0,197.0,249.0,249.0); uniform sampler2D depthtex1;//depth // #define ffstep(x,y) clamp((y - x) * 1e35,0.0,1.0) // #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) // #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), vec2(-1.,3.)/8., vec2(5.0,1.)/8., vec2(-3,-5.)/8., vec2(-5.,5.)/8., vec2(-7.,-1.)/8., vec2(3,7.)/8., vec2(7.,-7.)/8.); void main() { /* DRAWBUFFERS:4 */ gl_FragData[0] = vec4(0.0); //Save light values if (gl_FragCoord.x < 1. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(averageSkyCol_Clouds,1.0); if (gl_FragCoord.x > 1. && gl_FragCoord.x < 2. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(averageSkyCol,1.0); if (gl_FragCoord.x > 6. && gl_FragCoord.x < 7. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(lightSourceColor,1.0); if (gl_FragCoord.x > 8. && gl_FragCoord.x < 9. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(sunColor,1.0); if (gl_FragCoord.x > 13. && gl_FragCoord.x < 14. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(moonColor,1.0); const float pi = 3.141592653589793238462643383279502884197169; //Sky gradient (no clouds) if (gl_FragCoord.x > 18. && gl_FragCoord.y > 1. && gl_FragCoord.x < 18+257){ vec2 p = clamp(floor(gl_FragCoord.xy-vec2(18.,1.))/256.+tempOffsets/256.,0.0,1.0); vec3 viewVector = cartToSphere(p); vec2 planetSphere = vec2(0.0); vec3 sky = vec3(0.0); vec3 skyAbsorb = vec3(0.0); vec3 WsunVec = mat3(gbufferModelViewInverse)*sunVec; sky = calculateAtmosphere(averageSkyCol*4000./2.0, viewVector, vec3(0.0,1.0,0.0), WsunVec, -WsunVec, planetSphere, skyAbsorb, 10, blueNoise()); #ifdef AEROCHROME_MODE sky *= vec3(0.0, 0.18, 0.35); #endif gl_FragData[0] = vec4(sky/4000.*Sky_Brightness,1.0); } //Sky gradient with clouds if (gl_FragCoord.x > 18.+257. && gl_FragCoord.y > 1. && gl_FragCoord.x < 18+257+257.){ vec2 p = clamp(floor(gl_FragCoord.xy-vec2(18.+257,1.))/256.+tempOffsets/256.,0.0,1.0); vec3 viewVector = cartToSphere(p); vec3 WsunVec = mat3(gbufferModelViewInverse)*sunVec; vec3 sky = texelFetch2D(colortex4,ivec2(gl_FragCoord.xy)-ivec2(257,0),0).rgb/150. ; if(viewVector.y < -0.025) sky = sky * clamp( exp(viewVector.y) - 1.0,0.25,1.0) ; vec4 clouds = renderClouds(mat3(gbufferModelView)*viewVector*1024.,vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), sunColor, moonColor, averageSkyCol*5.0); sky = sky*clouds.a + clouds.rgb/5.0; vec4 VL_Fog = getVolumetricRays(mat3(gbufferModelView)*viewVector*1024., fract(frameCounter/1.6180339887), averageSkyCol); sky = sky*VL_Fog.a + VL_Fog.rgb*20; gl_FragData[0] = vec4(sky,1.0); } //Temporally accumulate sky and light values vec3 temp = texelFetch2D(colortex4,ivec2(gl_FragCoord.xy),0).rgb; vec3 curr = gl_FragData[0].rgb*150.; gl_FragData[0].rgb = clamp(mix(temp,curr,0.07),0.0,65000.); //Exposure values if (gl_FragCoord.x > 10. && gl_FragCoord.x < 11. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(exposure,avgBrightness,avgL2,1.0); if (gl_FragCoord.x > 14. && gl_FragCoord.x < 15. && gl_FragCoord.y > 19.+18. && gl_FragCoord.y < 19.+18.+1 ) gl_FragData[0] = vec4(rodExposure,centerDepth,0.0, 1.0); }