#include "/lib/settings.glsl" // #if defined END_SHADER || defined NETHER_SHADER #undef IS_LPV_ENABLED // #endif #ifndef OVERWORLD_SHADER uniform float nightVision; #endif flat varying vec4 lightCol; flat varying vec3 averageSkyCol; flat varying vec3 averageSkyCol_Clouds; flat varying float exposure; // uniform int dhRenderDistance; uniform sampler2D noisetex; uniform sampler2D depthtex0; uniform sampler2D depthtex1; #ifdef DISTANT_HORIZONS uniform sampler2D dhDepthTex; uniform sampler2D dhDepthTex1; #endif uniform sampler2D colortex2; uniform sampler2D colortex3; // uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D colortex7; uniform sampler2D colortex11; uniform sampler2D colortex14; flat varying vec3 WsunVec; uniform vec3 sunVec; uniform float sunElevation; // uniform float far; uniform float dhFarPlane; uniform float dhNearPlane; uniform float near; uniform int frameCounter; uniform float frameTimeCounter; // varying vec2 texcoord; uniform vec2 texelSize; // flat varying vec2 TAA_Offset; uniform int isEyeInWater; uniform float rainStrength; uniform ivec2 eyeBrightnessSmooth; uniform float eyeAltitude; uniform float caveDetection; #define DHVLFOG #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) #include "/lib/color_transforms.glsl" #include "/lib/color_dither.glsl" #include "/lib/projections.glsl" #include "/lib/res_params.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/Shadow_Params.glsl" #include "/lib/waterBump.glsl" #include "/lib/DistantHorizons_projections.glsl" float DH_ld(float dist) { return (2.0 * near) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane)); } float DH_inv_ld (float lindepth){ return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane); } float linearizeDepthFast(const in float depth, const in float near, const in float far) { return (near * far) / (depth * (near - far) + far); } #ifdef OVERWORLD_SHADER const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #ifdef TRANSLUCENT_COLORED_SHADOWS uniform sampler2D shadowcolor0; uniform sampler2DShadow shadowtex0; uniform sampler2DShadow shadowtex1; #endif flat varying vec3 refractedSunVec; #define TIMEOFDAYFOG #include "/lib/lightning_stuff.glsl" #define CLOUDS_INTERSECT_TERRAIN // #define CLOUDSHADOWSONLY #include "/lib/volumetricClouds.glsl" #include "/lib/overworld_fog.glsl" #endif #ifdef NETHER_SHADER uniform sampler2D colortex4; #include "/lib/nether_fog.glsl" #endif #ifdef END_SHADER uniform sampler2D colortex4; #include "/lib/end_fog.glsl" #endif #include "/lib/diffuse_lighting.glsl" #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float interleaved_gradientNoise(){ return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter ); } float R2_dither(){ #ifdef TAA vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0; #else vec2 coord = gl_FragCoord.xy; #endif vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * coord.x + alpha.y * coord.y ) ; } void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){ inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value int spCount = rayMarchSampleCount; vec3 start = toShadowSpaceProjected(rayStart); vec3 end = toShadowSpaceProjected(rayEnd); vec3 dV = (end-start); //limit ray length at 32 blocks for performance and reducing integration error //you can't see above this anyway float maxZ = min(rayLength,12.0)/(1e-8+rayLength); dV *= maxZ; rayLength *= maxZ; float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength; estEndDepth *= maxZ; estSunDepth *= maxZ; vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); vec3 absorbance = vec3(1.0); vec3 vL = vec3(0.0); float expFactor = 11.0; for (int i=0;i pos.z && sh.x < 1.0){ vec4 translucentShadow = texture2D(shadowcolor0, pos.xy); if(translucentShadow.a < 0.9) sh = normalize(translucentShadow.rgb+0.0001); } #else sh = vec3(shadow2D(shadow, pos).x); #endif } #ifdef VL_CLOUDS_SHADOWS sh *= GetCloudShadow_VLFOG(progressW,WsunVec); #endif #endif vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1); vec3 ambientMul = exp(-estEndDepth * d * waterCoefs ); vec3 Directlight = ((lightSource * sh) * phase * sunMul) ; vec3 Indirectlight = max(ambient * ambientMul, vec3(0.01,0.2,0.4) * ambientMul * MIN_LIGHT_AMOUNT * 0.03) ; vec3 light = (Indirectlight + Directlight) * scatterCoef; vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance; absorbance *= exp(-waterCoefs * dd * rayLength); } // inColor += vL; return vec4( vL, dot(newabsorbance,vec3(0.335))); } vec2 decodeVec2(float a){ const vec2 constant1 = 65535. / vec2( 256., 65536.); const float constant2 = 256. / 255.; return fract( a * constant1 ) * constant2 ; } //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// void main() { /* RENDERTARGETS:13 */ gl_FragData[0] = vec4(0,0,0,1); vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize; bool iswater = texture2D(colortex7,tc).a > 0.99; ////////////////////////////////////////////////////////// ///////////////// BEHIND OF TRANSLUCENTS ///////////////// ////////////////////////////////////////////////////////// if(texture2D(colortex2, tc).a > 0.0 || iswater){ float noise_1 = R2_dither(); float noise_2 = blueNoise(); float z0 = texture2D(depthtex0,tc).x; #ifdef DISTANT_HORIZONS float DH_z0 = texture2D(dhDepthTex,tc).x; #else float DH_z0 = 0.0; #endif float z = texture2D(depthtex1,tc).x; #ifdef DISTANT_HORIZONS float DH_z = texture2D(dhDepthTex1,tc).x; #else float DH_z = 0.0; #endif // vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.); float dirtAmount = Dirt_Amount + 0.1; // float dirtAmount = Dirt_Amount + 0.01; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14; #ifdef BIOME_TINT_WATER // yoink the biome tint written in this buffer for water only. if(iswater){ vec2 translucentdata = texture2D(colortex11,tc).gb; vec3 wateralbedo = normalize(vec3(decodeVec2(translucentdata.x),decodeVec2(translucentdata.y).x)+0.00001) * 0.5 + 0.5; scatterCoef = dirtAmount * wateralbedo / 3.14; } #endif vec3 directLightColor = lightCol.rgb/80.0; vec3 indirectLightColor = averageSkyCol/30.0; vec3 indirectLightColor_dynamic = averageSkyCol_Clouds/30.0; vec3 viewPos1 = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z); vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0); vec3 playerPos = normalize(mat3(gbufferModelViewInverse) * viewPos1); #ifdef OVERWORLD_SHADER // vec2 lightmap = decodeVec2(texture2D(colortex14, tc).a); vec2 lightmap = vec2(0.0,texture2D(colortex14, tc).a); #ifdef DISTANT_HORIZONS if(z >= 1.0) lightmap.y = 0.99; #endif #else vec2 lightmap = decodeVec2(texture2D(colortex14, tc).a); lightmap.y = 1.0; #endif float Vdiff = distance(viewPos1, viewPos0) * 2.0; float VdotU = playerPos.y; float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane float estimatedSunDepth = estimatedDepth / abs(WsunVec.y); //assuming water plane indirectLightColor_dynamic *= ambient_brightness * pow(1.0-pow(1.0-lightmap.y,0.5),3.0) ; // float TorchBrightness_autoAdjust = mix(1.0, 30.0, clamp(exp(-10.0*exposure),0.0,1.0)) ; // indirectLightColor_dynamic += vec3(TORCH_R,TORCH_G,TORCH_B) * TorchBrightness_autoAdjust * pow(1.0-sqrt(1.0-clamp(lightmap.x,0.0,1.0)),2.0) * 2.0; vec3 cloudDepth = vec3(0.0); vec4 VolumetricFog2 = vec4(0,0,0,1); vec4 VolumetricClouds = vec4(0,0,0,1); #ifdef OVERWORLD_SHADER if(!iswater){ #if defined CLOUDS_INTERSECT_TERRAIN VolumetricClouds = renderClouds(viewPos1, vec2(noise_1,noise_2), directLightColor, indirectLightColor, cloudDepth); #endif float atmosphereAlpha = 1.0; VolumetricFog2 = GetVolumetricFog(viewPos1, vec2(noise_1, noise_2), directLightColor, indirectLightColor,indirectLightColor_dynamic, atmosphereAlpha); VolumetricClouds.a *= atmosphereAlpha; #if defined CLOUDS_INTERSECT_TERRAIN VolumetricFog2 = vec4(VolumetricClouds.rgb * VolumetricFog2.a * atmosphereAlpha + VolumetricFog2.rgb, VolumetricFog2.a*VolumetricClouds.a); #endif } #endif vec4 underwaterVlFog = vec4(0,0,0,1); if(iswater) underwaterVlFog = waterVolumetrics_test(viewPos0, viewPos1, estimatedDepth, estimatedSunDepth, Vdiff, noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor* (1.0-caveDetection), dot(normalize(viewPos1), normalize(sunVec*lightCol.a)) ); vec4 fogFinal = vec4(underwaterVlFog.rgb * VolumetricFog2.a + VolumetricFog2.rgb, VolumetricFog2.a * underwaterVlFog.a); gl_FragData[0] = clamp(fogFinal, 0.0, 65000.0); } }