#version 120 #extension GL_EXT_gpu_shader4 : enable #include "/lib/settings.glsl" #include "/lib/diffuse_lighting.glsl" varying vec2 texcoord; flat varying vec3 avgAmbient; flat varying vec2 TAA_Offset; flat varying float tempOffsets; const bool colortex5MipmapEnabled = true; uniform sampler2D colortex0;//clouds uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16 uniform sampler2D colortex4;//Skybox uniform sampler2D colortex3; uniform sampler2D colortex7; uniform sampler2D colortex5; uniform sampler2D colortex2; uniform sampler2D colortex8; uniform sampler2D colortex15; uniform sampler2D colortex6;//Skybox uniform sampler2D depthtex1;//depth uniform sampler2D depthtex0;//depth uniform sampler2D noisetex;//depth uniform int heldBlockLightValue; uniform int frameCounter; uniform int isEyeInWater; uniform mat4 shadowModelViewInverse; uniform mat4 shadowProjectionInverse; uniform float far; uniform float near; uniform float frameTimeCounter; uniform float rainStrength; uniform mat4 gbufferProjection; uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferModelViewInverse; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform mat4 gbufferModelView; uniform mat4 gbufferPreviousModelView; uniform mat4 gbufferPreviousProjection; uniform vec3 previousCameraPosition; uniform vec2 texelSize; uniform float viewWidth; uniform float viewHeight; uniform float aspectRatio; uniform vec3 cameraPosition; uniform vec3 sunVec; uniform ivec2 eyeBrightnessSmooth; #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } #include "/lib/color_transforms.glsl" #include "/lib/waterBump.glsl" #include "/lib/sky_gradient.glsl" float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec2 RENDER_SCALE = vec2(1.0); #include "/lib/specular.glsl" #include "/lib/nether_fog.glsl" vec3 normVec (vec3 vec){ return vec*inversesqrt(dot(vec,vec)); } float lengthVec (vec3 vec){ return sqrt(dot(vec,vec)); } #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float triangularize(float dither) { float center = dither*2.0-1.0; dither = center*inversesqrt(abs(center)); return clamp(dither-fsign(center),0.0,1.0); } float interleaved_gradientNoise(float temp){ return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+temp); } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)); return noise; } vec3 fp10Dither(vec3 color,float dither){ const vec3 mantissaBits = vec3(6.,6.,5.); vec3 exponent = floor(log2(color)); return color + dither*exp2(-mantissaBits)*exp2(exponent); } float facos(float sx){ float x = clamp(abs( sx ),0.,1.); return sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 ); } vec3 decode (vec2 encn){ vec3 n = vec3(0.0); encn = encn * 2.0 - 1.0; n.xy = abs(encn); n.z = 1.0 - n.x - n.y; n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn; return clamp(normalize(n.xyz),-1.0,1.0); } vec2 decodeVec2(float a){ const vec2 constant1 = 65535. / vec2( 256., 65536.); const float constant2 = 256. / 255.; return fract( a * constant1 ) * constant2 ; } // float linZ(float depth) { // return (2.0 * near) / (far + near - depth * (far - near)); // // l = (2*n)/(f+n-d(f-n)) // // f+n-d(f-n) = 2n/l // // -d(f-n) = ((2n/l)-f-n) // // d = -((2n/l)-f-n)/(f-n) // } // float invLinZ (float lindepth){ // return -((2.0*near/lindepth)-far-near)/(far-near); // } // vec3 toClipSpace3(vec3 viewSpacePosition) { // return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5; // } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort) { float alpha0 = sampleNumber/nb; float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * 4.0 * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } vec3 BilateralFiltering(sampler2D tex, sampler2D depth,vec2 coord,float frDepth,float maxZ){ vec4 sampled = vec4(texelFetch2D(tex,ivec2(coord),0).rgb,1.0); return vec3(sampled.x,sampled.yz/sampled.w); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } float R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y); } vec3 toShadowSpaceProjected(vec3 p3){ p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz; p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz; return p3; } vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0) { float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb))); float angle = alpha * (nbRot * 6.28) + spinAngle*6.28; float ssR = alpha; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } float ssao(vec3 fragpos, float dither,vec3 normal) { float mulfov = 1.0; ivec2 pos = ivec2(gl_FragCoord.xy); const float tan70 = tan(70.*3.14/180.); float mulfov2 = gbufferProjection[1][1]/tan70; const float PI = 3.14159265; const float samplingRadius = 0.712; float angle_thresh = 0.05; float rd = mulfov2*0.05; //pre-rotate direction float n = 0.; float occlusion = 0.0; vec2 acc = -vec2(TAA_Offset)*texelSize*0.5; float mult = (dot(normal,normalize(fragpos))+1.0)*0.5+0.5; vec2 v = fract(vec2(dither,interleaved_gradientNoise()) + (frameCounter%10000) * vec2(0.75487765, 0.56984026)); for (int j = 0; j < 7+2 ;j++) { vec2 sp = tapLocation(j,v.x,7+2,2.,v.y); vec2 sampleOffset = sp*rd; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight)); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x)); vec3 vec = t0.xyz - fragpos; float dsquared = dot(vec,vec); if (dsquared > 1e-5){ if (dsquared < fragpos.z*fragpos.z*0.05*0.05*mulfov2*2.*1.412){ float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.); occlusion += NdotV; } n += 1.0; } } } return clamp(1.0-occlusion/n*2.0,0.,1.0); } vec3 viewToWorld(vec3 viewPosition) { vec4 pos; pos.xyz = viewPosition; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){ inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value int spCount = rayMarchSampleCount; vec3 start = toShadowSpaceProjected(rayStart); vec3 end = toShadowSpaceProjected(rayEnd); vec3 dV = (end-start); //limit ray length at 32 blocks for performance and reducing integration error //you can't see above this anyway float maxZ = min(rayLength,12.0)/(1e-8+rayLength); dV *= maxZ; vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ; rayLength *= maxZ; float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength; estEndDepth *= maxZ; estSunDepth *= maxZ; vec3 absorbance = vec3(1.0); vec3 vL = vec3(0.0); float expFactor = 11.0; vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition; for (int i=0;i= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) ); vec3 vec = t0.xyz - fragpos; float dsquared = dot(vec,vec); if (dsquared > 1e-5){ if(dsquared > maxR2_2){ float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.); sss += max((NdotV - (1.0-NdotV)) * clamp(1.0-maxR2_2/dsquared,0.0,1.0) ,0.0); } n += 1; } } } sss = max(1.0 - sss/n, 0.0); } void main() { float dirtAmount = Dirt_Amount; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14; float z0 = texture2D(depthtex0,texcoord).x; float z = texture2D(depthtex1,texcoord).x; vec2 tempOffset=TAA_Offset; float noise = blueNoise(); vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z)); vec3 p3 = mat3(gbufferModelViewInverse) * fragpos; vec3 np3 = normVec(p3); vec4 trpData = texture2D(colortex7,texcoord); bool iswater = trpData.a > 0.99; vec4 SpecularTex = texture2D(colortex8,texcoord); float LabSSS = clamp((-65.0 + SpecularTex.z * 255.0) / 190.0 ,0.0,1.0); vec4 data = texture2D(colortex1,texcoord); // terraom vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); float Translucent_Programs = texture2D(colortex2,texcoord).a; // the shader for all translucent progams. // Normal // vec3 normal = decode(dataUnpacked0.yw) ; vec4 normalAndAO = texture2D(colortex15,texcoord); vec3 FlatNormals = normalAndAO.rgb * 2.0 - 1.0; float vanilla_AO = 1.0 - exp2(-5 * pow(1-normalAndAO.a,3)) ; vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x)); vec2 lightmap = dataUnpacked1.yz; bool translucent = abs(dataUnpacked1.w-0.5) <0.01; bool hand = abs(dataUnpacked1.w-0.75) <0.01; float Indirect_SSS = 0.0; if (z >=1.0) { vec3 color = clamp(gl_Fog.color.rgb*pow(luma(gl_Fog.color.rgb),-0.75)*0.65,0.0,1.0)*0.02; gl_FragData[0].rgb = clamp(fp10Dither(color*8./3. * (1.0-rainStrength*0.4),triangularize(noise)),0.0,65000.); } else { p3 += gbufferModelViewInverse[3].xyz + cameraPosition; vec3 FogColor = (gl_Fog.color.rgb / pow(0.00001 + dot(gl_Fog.color.rgb,vec3(0.3333)),1.0) ) * 0.2; // do all ambient lighting stuff vec3 Indirect_lighting = DoAmbientLighting_Nether(FogColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, normal, np3, p3 ); if(!hand) Indirect_lighting *= ssao(fragpos,noise,FlatNormals) * vanilla_AO; // ScreenSpace_SSS(Indirect_SSS, fragpos, vec2(R2_dither()), FlatNormals); // Indirect_lighting *= 1 + SubsurfaceScattering_sky(albedo, Indirect_SSS, LabSSS) * 5; vec3 LightColor = LightSourceColor(); float SdotV = dot(normalize(viewspace_sunvec), normalize(fragpos)); float OrbMie = max(exp((p3.y - 60) / -30.),0); // 0.5 added because lightsources are always high radius. float NdotL = clamp( dot(normal,normalize(WsunVec)) + 0.25,0.0,1.0); vec3 LightSource = LightColor * NdotL * OrbMie ; // LightSource *= rayTraceShadow(worldToView(normalize(-LightPos)), fragpos, interleaved_gradientNoise()); // LightSource *= GetCloudShadow(p3, WsunVec, blueNoise()); // finalize gl_FragData[0].rgb = (Indirect_lighting) * albedo; // gl_FragData[0].rgb = LightSource * albedo; #ifdef Specular_Reflections MaterialReflections_N(gl_FragData[0].rgb, SpecularTex.r, SpecularTex.ggg, albedo, normal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg,noise), hand); #endif #ifdef LabPBR_Emissives LabEmission(gl_FragData[0].rgb, albedo, SpecularTex.a); #endif } // ////// border Fog // if(Translucent_Programs > 0.0){ // vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(0.0)*texelSize*0.5,z)); // float fogdistfade = 1.0 - clamp( exp(-pow(length(fragpos / far),2.)*5.0) ,0.0,1.0); // gl_FragData[0].rgb = mix(gl_FragData[0].rgb, gl_Fog.color.rgb*0.5*NetherFog_brightness, fogdistfade) ; // } ////// Water Fog if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){ vec3 fragpos0 = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z0)); float Vdiff = distance(fragpos,fragpos0); if(isEyeInWater == 1) Vdiff = (length(fragpos)); float VdotU = np3.y; float estimatedDepth = Vdiff; //assuming water plane float estimatedSunDepth = estimatedDepth; //assuming water plane vec3 ambientColVol = vec3(1.0,0.25,0.5) * 0.33 ; waterVolumetrics(gl_FragData[0].rgb, fragpos0, fragpos, estimatedDepth , estimatedSunDepth, Vdiff, noise, totEpsilon, scatterCoef, ambientColVol); } // gl_FragData[0].rgb = SubsurfaceScattering_sky(albedo, Indirect_SSS, 1.0) * vec3(1); /* DRAWBUFFERS:3 */ }