#include "/lib/settings.glsl" #define EXCLUDE_WRITE_TO_LUT flat varying vec4 lightCol; flat varying vec3 averageSkyCol; flat varying vec3 averageSkyCol_Clouds; uniform sampler2D noisetex; uniform sampler2D depthtex0; uniform sampler2D depthtex1; #ifdef DISTANT_HORIZONS uniform sampler2D dhDepthTex; uniform sampler2D dhDepthTex1; #endif uniform sampler2D colortex0; uniform sampler2D colortex2; uniform sampler2D colortex3; // uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D colortex7; flat varying vec3 WsunVec; uniform vec3 sunVec; uniform float sunElevation; // uniform float far; uniform float near; uniform float dhFarPlane; uniform float dhNearPlane; uniform int frameCounter; uniform float frameTimeCounter; // varying vec2 texcoord; uniform vec2 texelSize; // flat varying vec2 TAA_Offset; uniform int isEyeInWater; uniform float rainStrength; uniform ivec2 eyeBrightnessSmooth; uniform float eyeAltitude; uniform float caveDetection; // uniform int dhRenderDistance; #define DHVLFOG #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) #include "/lib/color_transforms.glsl" #include "/lib/color_dither.glsl" #include "/lib/projections.glsl" #include "/lib/res_params.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/Shadow_Params.glsl" #include "/lib/waterBump.glsl" #include "/lib/DistantHorizons_projections.glsl" float DH_ld(float dist) { return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane)); } float DH_inv_ld (float lindepth){ return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane); } float linearizeDepthFast(const in float depth, const in float near, const in float far) { return (near * far) / (depth * (near - far) + far); } #define IS_LPV_ENABLED #if defined LPV_VL_FOG_ILLUMINATION && defined IS_LPV_ENABLED flat varying float exposure; #ifdef IS_LPV_ENABLED #extension GL_ARB_shader_image_load_store: enable #extension GL_ARB_shading_language_packing: enable #endif #ifdef IS_LPV_ENABLED uniform usampler1D texBlockData; uniform sampler3D texLpv1; uniform sampler3D texLpv2; #endif // #ifdef IS_LPV_ENABLED // uniform int heldItemId; // uniform int heldItemId2; // #endif #ifdef IS_LPV_ENABLED #include "/lib/hsv.glsl" #include "/lib/lpv_common.glsl" #include "/lib/lpv_render.glsl" #endif vec3 LPV_FOG_ILLUMINATION(in vec3 playerPos, float dd, float dL){ vec3 color = vec3(0.0); vec3 lpvPos = GetLpvPosition(playerPos); float fadeLength = 10.0; // in blocks vec3 cubicRadius = clamp( min(((LpvSize3-1.0) - lpvPos)/fadeLength, lpvPos/fadeLength) ,0.0,1.0); float LpvFadeF = cubicRadius.x*cubicRadius.y*cubicRadius.z; if(LpvFadeF > 0.0){ vec4 lpvSample = SampleLpvLinear(lpvPos); if(length(lpvSample.xyz) > 1e-5){ vec3 LpvTorchLight = GetLpvBlockLight(lpvSample); vec3 lighting = LpvTorchLight; float density = exp(-5.0 * clamp( 1.0 - length(lpvSample.xyz) / 16.0,0.0,1.0)) * (LPV_VL_FOG_ILLUMINATION_BRIGHTNESS/100.0) * LpvFadeF; color = lighting - lighting * exp(-density*dd*dL); } } return color; } #endif float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } #ifdef OVERWORLD_SHADER const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #ifdef TRANSLUCENT_COLORED_SHADOWS uniform sampler2D shadowcolor0; uniform sampler2DShadow shadowtex0; uniform sampler2DShadow shadowtex1; #endif flat varying vec3 refractedSunVec; // uniform int dhRenderDistance; #define TIMEOFDAYFOG #include "/lib/lightning_stuff.glsl" #define CLOUDS_INTERSECT_TERRAIN #include "/lib/volumetricClouds.glsl" #include "/lib/overworld_fog.glsl" #endif #ifdef NETHER_SHADER uniform sampler2D colortex4; #include "/lib/nether_fog.glsl" #endif #ifdef END_SHADER uniform sampler2D colortex4; #include "/lib/end_fog.glsl" #endif #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float interleaved_gradientNoise_temporal(){ return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521); } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)); return noise; } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter ); } float R2_dither(){ #ifdef TAA vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0; #else vec2 coord = gl_FragCoord.xy; #endif vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * coord.x + alpha.y * coord.y ) ; } void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){ inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value int spCount = rayMarchSampleCount; vec3 start = toShadowSpaceProjected(rayStart); vec3 end = toShadowSpaceProjected(rayEnd); vec3 dV = (end-start); //limit ray length at 32 blocks for performance and reducing integration error //you can't see above this anyway float maxZ = min(rayLength,12.0)/(1e-8+rayLength); dV *= maxZ; rayLength *= maxZ; float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength; estEndDepth *= maxZ; estSunDepth *= maxZ; vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); vec3 absorbance = vec3(1.0); vec3 vL = vec3(0.0); float expFactor = 11.0; for (int i=0;i pos.z && sh.x < 1.0){ sh = normalize(texture2D(shadowcolor0, pos.xy).rgb+0.0001); } #else sh = vec3(shadow2D(shadow, pos).x); #endif } #ifdef VL_CLOUDS_SHADOWS sh *= GetCloudShadow_VLFOG(progressW, WsunVec); #endif // float bubble = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - length(d*dVWorld) / (16),0.0)*5.0,1.0),2.0),2.0); float bubble = exp( -7.0 * clamp(1.0 - length(d*dVWorld) / 16.0, 0.0,1.0) ); float bubble2 = max(pow(length(d*dVWorld)/24,5)*100.0,0.0) + 1; float sunCaustics = (waterCaustics(progressW, WsunVec)) * mix(0.25,10.0,bubble) + 0.75; vec3 sunMul = exp(-1 * d * waterCoefs * 1.1); vec3 Directlight = ((lightSource* sh) * phase * sunMul * sunCaustics) * lowlightlevel * pow(abs(WsunVec.y),1); #else vec3 Directlight = vec3(0.0); #endif vec3 ambientMul = exp(-1 * d * waterCoefs); vec3 Indirectlight = ambient * ambientMul * YFade * lowlightlevel; vec3 light = (Indirectlight + Directlight) * scatterCoef; vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance; absorbance *= exp(-waterCoefs * dd * rayLength); #if defined LPV_VL_FOG_ILLUMINATION && defined EXCLUDE_WRITE_TO_LUT vL += LPV_FOG_ILLUMINATION(progressW-cameraPosition, dd, 1.0); #endif } inColor += vL; } // #endif vec4 blueNoise(vec2 coord){ return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ; } vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float fogPhase2(float lightPoint){ float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0); float linear2 = 1.0 - clamp(lightPoint,0.0,1.0); float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5; exponential += sqrt(exp2(sqrt(linear) * -12.5)); return exponential; } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } // uniform int framemod8; // #include "/lib/TAA_jitter.glsl" //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// void main() { #if defined OVERWORLD_SHADER && defined CLOUDS_INTERSECT_TERRAIN /* RENDERTARGETS:0,14 */ #else /* RENDERTARGETS:0 */ #endif float noise_1 = max(1.0 - R2_dither(),0.0015); float noise_2 = blueNoise(); vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize + texelSize*0.5; bool iswater = texture2D(colortex7,tc).a > 0.99; float z0 = texture2D(depthtex0, tc).x; #ifdef DISTANT_HORIZONS float DH_z0 = texture2D(dhDepthTex,tc).x; #else float DH_z0 = 0.0; #endif vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE , z0, DH_z0); vec3 playerPos_normalized = normalize(mat3(gbufferModelViewInverse) * viewPos0 + gbufferModelViewInverse[3].xyz); float dirtAmount = Dirt_Amount + 0.01; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14; vec3 directLightColor = lightCol.rgb/80.0; vec3 indirectLightColor = averageSkyCol/30.0; vec3 indirectLightColor_dynamic = averageSkyCol_Clouds/30.0; vec3 cloudDepth = vec3(0.0); vec3 fogDepth = vec3(0.0); #if defined OVERWORLD_SHADER && defined CLOUDS_INTERSECT_TERRAIN vec4 VolumetricClouds = renderClouds(viewPos0, vec2(noise_1,noise_2), directLightColor, indirectLightColor, cloudDepth); #ifdef CAVE_FOG float skyhole = (1.0-pow(clamp(1.0-pow(max(playerPos_normalized.y - 0.6,0.0)*5.0,2.0),0.0,1.0),2)* caveDetection) ; VolumetricClouds.rgb *= skyhole; VolumetricClouds.a = mix(VolumetricClouds.a, 1.0, (1.0-skyhole) * caveDetection); #endif #endif #ifdef OVERWORLD_SHADER float atmosphereAlpha = 1.0; vec4 VolumetricFog = GetVolumetricFog(viewPos0, vec2(noise_2,noise_1), directLightColor, indirectLightColor, averageSkyCol_Clouds/30.0, atmosphereAlpha); VolumetricClouds.a *= atmosphereAlpha; #endif #if defined NETHER_SHADER || defined END_SHADER vec4 VolumetricFog = GetVolumetricFog(viewPos0, noise_1, noise_2); #endif #if defined OVERWORLD_SHADER && defined CLOUDS_INTERSECT_TERRAIN VolumetricFog = vec4(VolumetricClouds.rgb * VolumetricFog.a * atmosphereAlpha + VolumetricFog.rgb, VolumetricFog.a); #endif gl_FragData[0] = clamp(VolumetricFog, 0.0, 65000.0); if (isEyeInWater == 1){ float estEyeDepth = clamp(eyeBrightnessSmooth.y/240.0,0.,1.0); // estEyeDepth = pow(estEyeDepth,3.0) * 32.0; estEyeDepth = 0.0; // vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.); vec3 vl = vec3(0.0); waterVolumetrics(vl, vec3(0.0), viewPos0, estEyeDepth, estEyeDepth, length(viewPos0), noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor , dot(normalize(viewPos0), normalize(sunVec* lightCol.a ) )); gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.); } #if defined OVERWORLD_SHADER && defined CLOUDS_INTERSECT_TERRAIN gl_FragData[1] = vec4(VolumetricClouds.a,0.0,0.0,0.0); #endif }