#version 120 //Render sky, volumetric clouds, direct lighting #extension GL_EXT_gpu_shader4 : enable #include "lib/settings.glsl" const bool colortex5MipmapEnabled = true; const bool colortex12MipmapEnabled = true; // const bool colortex4MipmapEnabled = true; const bool shadowHardwareFiltering = true; flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon) flat varying vec3 avgAmbient; flat varying vec3 WsunVec; flat varying vec2 TAA_Offset; flat varying float tempOffsets; uniform float eyeAltitude; /* const int colortex12Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4) const int colortex15Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4) */ flat varying vec3 zMults; uniform sampler2D colortex0;//clouds uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16 // uniform sampler2D colortex4;//Skybox uniform sampler2D colortex3; uniform sampler2D colortex5; uniform sampler2D colortex7; // normal uniform sampler2D colortex6; // Noise uniform sampler2D colortex8; // specular // uniform sampler2D colortex9; // specular uniform sampler2D colortex11; // specular uniform sampler2D colortex10; // specular uniform sampler2D colortex12; // specular uniform sampler2D colortex13; // specular uniform sampler2D colortex14; uniform sampler2D colortex15; // specular uniform sampler2D colortex16; // specular uniform sampler2D depthtex1;//depth uniform sampler2D depthtex0;//depth uniform sampler2D noisetex;//depth uniform sampler2DShadow shadow; varying vec4 normalMat; uniform int heldBlockLightValue; uniform int frameCounter; uniform int isEyeInWater; uniform float far; uniform float near; uniform float nightVision; uniform float frameTimeCounter; uniform float rainStrength; uniform mat4 gbufferProjection; uniform mat4 gbufferProjectionInverse; uniform mat4 gbufferModelViewInverse; uniform mat4 gbufferPreviousModelView; uniform mat4 gbufferPreviousProjection; uniform vec3 previousCameraPosition; uniform mat4 shadowModelView; uniform mat4 shadowProjection; uniform mat4 gbufferModelView; // uniform float viewWidth; // uniform float viewHeight; uniform float aspectRatio; uniform vec2 texelSize; uniform vec3 cameraPosition; uniform vec3 sunVec; uniform ivec2 eyeBrightnessSmooth; uniform ivec2 eyeBrightness; // uniform int worldTime; #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) vec3 toScreenSpace(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } vec3 toScreenSpacePrev(vec3 p) { vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw); vec3 p3 = p * 2. - 1.; vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3]; return fragposition.xyz / fragposition.w; } vec3 worldToView(vec3 p3) { vec4 pos = vec4(p3, 0.0); pos = gbufferModelView * pos; return pos.xyz; } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 ld(vec3 dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 srgbToLinear2(vec3 srgb){ return mix( srgb / 12.92, pow(.947867 * srgb + .0521327, vec3(2.4) ), step( .04045, srgb ) ); } vec3 blackbody2(float Temp) { float t = pow(Temp, -1.5); float lt = log(Temp); vec3 col = vec3(0.0); col.x = 220000.0 * t + 0.58039215686; col.y = 0.39231372549 * lt - 2.44549019608; col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y; col.z = 0.76078431372 * lt - 5.68078431373; col = clamp(col,0.0,1.0); col = Temp < 1000. ? col * Temp * 0.001 : col; return srgbToLinear2(col); } vec3 normVec (vec3 vec){ return vec*inversesqrt(dot(vec,vec)); } vec3 viewToWorld(vec3 viewPosition) { vec4 pos; pos.xyz = viewPosition; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } #include "lib/res_params.glsl" #include "lib/Shadow_Params.glsl" #include "lib/color_transforms.glsl" #include "lib/sky_gradient.glsl" #include "lib/stars.glsl" #include "lib/volumetricClouds.glsl" #include "lib/waterBump.glsl" #include "lib/specular.glsl" #include "lib/diffuse_lighting.glsl" float lengthVec (vec3 vec){ return sqrt(dot(vec,vec)); } #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) float triangularize(float dither) { float center = dither*2.0-1.0; dither = center*inversesqrt(abs(center)); return clamp(dither-fsign(center),0.0,1.0); } float interleaved_gradientNoise(){ // vec2 coord = gl_FragCoord.xy + (frameCounter%40000); vec2 coord = gl_FragCoord.xy + frameTimeCounter; // vec2 coord = gl_FragCoord.xy; float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) ); return noise ; } vec2 R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return vec2(fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter), fract((1.0-alpha.x) * gl_FragCoord.x + (1.0-alpha.y) * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter)); } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * (frameCounter*0.5+0.5) ); } vec4 blueNoise(vec2 coord){ return texelFetch2D(colortex6, ivec2(coord )%512, 0) ; } vec3 fp10Dither(vec3 color,float dither){ const vec3 mantissaBits = vec3(6.,6.,5.); vec3 exponent = floor(log2(color)); return color + dither*exp2(-mantissaBits)*exp2(exponent); } vec3 decode (vec2 encn){ vec3 n = vec3(0.0); encn = encn * 2.0 - 1.0; n.xy = abs(encn); n.z = 1.0 - n.x - n.y; n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn; return clamp(normalize(n.xyz),-1.0,1.0); } vec2 decodeVec2(float a){ const vec2 constant1 = 65535. / vec2( 256., 65536.); const float constant2 = 256. / 255.; return fract( a * constant1 ) * constant2 ; } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort){ float alpha0 = sampleNumber/nb; float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * 84.0 * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } vec3 toShadowSpaceProjected(vec3 p3){ p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz; p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz; return p3; } vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0){ float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb))); float angle = alpha * (nbRot * 3.14) + spinAngle*3.14; float ssR = alpha; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){ inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value int spCount = rayMarchSampleCount; vec3 start = toShadowSpaceProjected(rayStart); vec3 end = toShadowSpaceProjected(rayEnd); vec3 dV = (end-start); //limit ray length at 32 blocks for performance and reducing integration error //you can't see above this anyway float maxZ = min(rayLength,12.0)/(1e-8+rayLength); dV *= maxZ; rayLength *= maxZ; float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength; estEndDepth *= maxZ; estSunDepth *= maxZ; vec3 absorbance = vec3(1.0); vec3 vL = vec3(0.0); float phase = phaseg(VdotL,0.7) * 1.5 + 0.1; vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float expFactor = 11.0; for (int i=0;i -near) ? (-near -position.z) / dir.z : far*sqrt(3.) ; vec3 direction = toClipSpace3(position+dir*rayLength)-clipPosition; //convert to clip space direction.xyz = direction.xyz/max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y); //fixed step size vec3 stepv = direction * 3.0 * clamp(MC_RENDER_QUALITY,1.,2.0)*vec3(RENDER_SCALE,1.0); vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0); // spos.xy += (TAA_Offset*(texelSize/4))*RENDER_SCALE ; spos += stepv*dither ; for (int i = 0; i < int(quality); i++) { spos += stepv; float sp = texture2D(depthtex1,spos.xy).x; if( sp < spos.z) { float dist = abs(linZ(sp)-linZ(spos.z))/linZ(spos.z); if (dist < 0.015 ) return i / quality; } } return 1.0; } vec2 tapLocation_alternate( int sampleNumber, float spinAngle, int nb, float nbRot, float r0 ){ float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb))); float angle = alpha * (nbRot * 3.14) ; float ssR = alpha + spinAngle*3.14; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*ssR; } void ssAO(inout vec3 lighting, inout float sss, vec3 fragpos,float mulfov, vec2 noise, vec3 normal, vec2 texcoord, vec3 ambientCoefs, vec2 lightmap){ ivec2 pos = ivec2(gl_FragCoord.xy); const float tan70 = tan(70.*3.14/180.); float dist = 1.0 + clamp(fragpos.z*fragpos.z/50.0,0,2); // shrink sample size as distance increases float mulfov2 = gbufferProjection[1][1]/(tan70 * dist); float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*5/50.0; #ifdef Ambient_SSS float dist3 = clamp(1.0 - exp( fragpos.z*fragpos.z / -50),0,1); float maxR2_2 = mix(10.0, fragpos.z*fragpos.z*mulfov2*2./50.0, dist3); #endif float rd = mulfov2 * 0.1 ; vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ; int seed = (frameCounter%40000)*2 + (1+frameCounter); float randomDir = fract(R2_samples(seed).y + noise.x ) * 1.61803398874 ; float n = 0.0; float occlusion = 0.0; for (int j = 0; j < 7; j++) { vec2 sp = tapLocation_alternate(j, 0.0, 7, 20, randomDir); vec2 sampleOffset = sp*rd; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) ); vec3 vec = (t0.xyz - fragpos); float dsquared = dot(vec,vec) ; if (dsquared > 1e-5){ if (dsquared < maxR2){ float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.); occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0); } #ifdef Ambient_SSS if(dsquared > maxR2_2){ float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.); sss += max((NdotV - (1.0-NdotV)) * clamp(1.0-maxR2_2/dsquared,0.0,1.0) ,0.0); } #endif n += 1; } } } #ifdef Ambient_SSS sss = max(1.0 - sss/n, 0.0) ; #endif occlusion *= 2.0; occlusion = max(1.0 - occlusion/n, 0.0); lighting = lighting*max(occlusion,pow(lightmap.x,4)); } vec3 DoContrast(vec3 Color, float strength){ float Contrast = log(strength); return clamp(mix(vec3(0.5), Color, Contrast) ,0,255); } vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){ float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases float stepSize = stepsizes / dist; int maxSteps = STEPS; vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ? (-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far; vec3 end = toClipSpace3(position+dir*rayLength) ; vec3 direction = end-clipPosition ; //convert to clip space float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize; //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0; vec3 stepv = direction/len; int iterations = min(int(min(len, mult*len)-2), maxSteps); //Do one iteration for closest texel (good contact shadows) vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ; spos.xy += TAA_Offset*texelSize*0.5*RENDER_SCALE; spos += stepv/(stepSize/2); float distancered = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases for(int i = 0; i < iterations; i++){ if (spos.x < 0.0 || spos.y < 0.0 || spos.z < 0.0 || spos.x > 1.0 || spos.y > 1.0 || spos.z > 1.0) return vec3(1.1); spos += stepv*noise; float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/ texelSize/4),0).w/65000.0); float currZ = linZ(spos.z); if( sp < currZ) { float dist = abs(sp-currZ)/currZ; if (dist <= 0.1) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0); } } return vec3(1.1); } vec3 cosineHemisphereSample(vec2 Xi, float roughness){ float r = sqrt(Xi.x); float theta = 2.0 * 3.14159265359 * Xi.y; float x = r * cos(theta); float y = r * sin(theta); return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.))); } vec3 TangentToWorld(vec3 N, vec3 H, float roughness){ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 T = normalize(cross(UpVector, N)); vec3 B = cross(N, T); return vec3((T * H.x) + (B * H.y) + (N * H.z)); } void rtAO(inout vec3 lighting, vec3 normal, vec2 noise, vec3 fragpos, float lightmap, float inShadow){ int nrays = 4; float occlude = 0.0; float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength); for (int i = 0; i < nrays; i++){ int seed = (frameCounter%40000)*nrays+i; vec2 ij = fract(R2_samples(seed) + noise.rg); vec3 rayDir = TangentToWorld( normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0) ; #ifdef HQ_SSGI vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 30.); // ssr rt #else vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 24.); // choc sspt #endif // vec3 lightDir = normalize(vec3(0.2,0.8,0.2)); // float skyLightDir = dot(rayDir,lightDir); // the positons where the occlusion happens float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens if (rayHit.z > 1.0) occlude += max(rayDir.y,1-AO_Strength); } // occlude = mix( occlude,1, inShadow); // occlude = occlude*0.5 + 0.5; lighting *= 3.0; lighting *= mix(occlude/nrays,1.0,0) ; } void rtGI(inout vec3 lighting, vec3 normal,vec2 noise,vec3 fragpos, float lightmap, vec3 albedo){ int nrays = RAY_COUNT; vec3 intRadiance = vec3(0.0); vec3 occlude = vec3(0.0); lighting *= 1.50; float indoor = clamp(pow(lightmap,2)*2,0.0,AO_Strength); for (int i = 0; i < nrays; i++){ int seed = (frameCounter%40000)*nrays+i; vec2 ij = fract(R2_samples(seed) + noise ); vec3 rayDir = TangentToWorld(normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0); #ifdef HQ_SSGI vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 50.); // ssr rt #else vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 30.); // choc sspt #endif float skyLightDir = rayDir.y > 0.0 ? 1.0 : max(rayDir.y,1.0-indoor); // the positons where the occlusion happens if (rayHit.z < 1.){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) intRadiance = 0 + texture2D(colortex5,previousPosition.xy).rgb * GI_Strength ; else intRadiance += lighting*skyLightDir; // make sure ambient light exists but at screen edges when you turn }else{ intRadiance += lighting*skyLightDir; } } lighting = intRadiance/nrays; } vec3 SubsurfaceScattering_sun(vec3 albedo, float Scattering, float Density, float lightPos){ float labcurve = pow(Density,LabSSS_Curve); float density = sqrt(30 - labcurve*15); vec3 absorbed = max(1.0 - albedo,0.0) * density; vec3 scatter = exp(-sqrt(Scattering * absorbed)) * exp(Scattering * -density); scatter *= labcurve; scatter *= 0.5 + CustomPhase(lightPos, 1.0,30.0)*20; return scatter; } vec3 SubsurfaceScattering_sky(vec3 albedo, float Scattering, float Density){ vec3 absorbed = max(luma(albedo) - albedo,0.0); // vec3 scatter = exp(-sqrt(max(Scattering+0.05,0.0) * absorbed * 25)) * exp(Scattering * -5); vec3 scatter = exp(-sqrt(Scattering * absorbed * 5)) * pow((-Scattering+1.0)*1.25,2.0); scatter *= pow(Density,LabSSS_Curve); // temporary scatter *= ambientsss_brightness; return scatter; } void ScreenSpace_SSS(inout float sss, vec3 fragpos, vec2 noise, vec3 normal){ ivec2 pos = ivec2(gl_FragCoord.xy); const float tan70 = tan(70.*3.14/180.); float dist = 1.0 + (clamp(fragpos.z*fragpos.z/50.0,0,2)); // shrink sample size as distance increases float mulfov2 = gbufferProjection[1][1]/(tan70 * dist); float dist3 = clamp(1-exp( fragpos.z*fragpos.z / -50),0,1); float maxR2_2 = mix(10, fragpos.z*fragpos.z*mulfov2*2./50.0, dist3); float rd = mulfov2 * 0.1; vec2 acc = -(TAA_Offset*(texelSize/2))*RENDER_SCALE ; int seed = (frameCounter%40000)*2 + (1+frameCounter); float randomDir = fract(R2_samples(seed).y + noise.x ) * 1.61803398874 ; float n = 0.0; for (int j = 0; j < 7 ;j++) { vec2 sp = tapLocation_alternate(j, 0.0, 7, 20, randomDir); vec2 sampleOffset = sp*rd; ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio)*RENDER_SCALE); if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth*RENDER_SCALE.x && offset.y < viewHeight*RENDER_SCALE.y ) { vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) * vec3(1.0/RENDER_SCALE, 1.0) ); vec3 vec = t0.xyz - fragpos; float dsquared = dot(vec,vec); if (dsquared > 1e-5){ if(dsquared > maxR2_2){ float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.); sss += max((NdotV - (1.0-NdotV)) * clamp(1.0-maxR2_2/dsquared,0.0,1.0) ,0.0); } n += 1; } } } sss = max(1.0 - sss/n, 0.0); } float densityAtPosSNOW(in vec3 pos){ pos /= 18.; pos.xz *= 0.5; vec3 p = floor(pos); vec3 f = fract(pos); f = (f*f) * (3.-2.*f); vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0); vec2 coord = uv / 512.0; vec2 xy = texture2D(noisetex, coord).yx; return mix(xy.r,xy.g, f.y); } // Emin's and Gri's combined ideas to stop peter panning and light leaking, also has little shadowacne so thats nice // https://www.complementary.dev/reimagined // https://github.com/gri573 void GriAndEminShadowFix( inout vec3 WorldPos, vec3 FlatNormal, float VanillaAO, float SkyLightmap, bool Entities ){ float DistanceOffset = clamp(0.1 + length(WorldPos) / (shadowMapResolution*0.20), 0.0,1.0) ; vec3 Bias = FlatNormal * DistanceOffset; // adjust the bias thingy's strength as it gets farther away. // stop lightleaking if(SkyLightmap < 0.1 && !Entities) { WorldPos += mix(Bias, 0.5 * (0.5 - fract(WorldPos + cameraPosition + FlatNormal*0.01 ) ), VanillaAO) ; }else{ WorldPos += Bias; } } void LabEmission( inout vec3 Lighting, vec3 Albedo, float Emission ){ // if( Emission < 255.0/255.0 ) Lighting = mix(Lighting, Albedo * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why if( Emission < 255.0/255.0 ) Lighting += (Albedo * Emissive_Brightness) * pow(Emission, Emissive_Curve); } #include "lib/PhotonGTAO.glsl" //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// void main() { vec2 texcoord = gl_FragCoord.xy*texelSize; float z0 = texture2D(depthtex0,texcoord).x; float z = texture2D(depthtex1,texcoord).x; float TranslucentDepth = clamp( ld(z0)-ld(z0) ,0.0,1.0); vec2 tempOffset=TAA_Offset; vec3 fragpos = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z)); vec3 fragpos_rtshadow = toScreenSpace(vec3(texcoord/RENDER_SCALE,z)); vec3 fragpos_handfix = fragpos; if ( z < 0.56) fragpos_handfix.z /= MC_HAND_DEPTH; // fix lighting on hand vec3 p3 = mat3(gbufferModelViewInverse) * fragpos; vec3 np3 = normVec(p3); p3 += gbufferModelViewInverse[3].xyz; float dirtAmount = Dirt_Amount; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / pi; #ifdef AEROCHROME_MODE totEpsilon *= 10.0; scatterCoef *= 0.1; #endif float noise = blueNoise(); float iswaterstuff = texture2D(colortex7,texcoord).a ; bool iswater = iswaterstuff > 0.99; ////// --------------- UNPACK OPAQUE GBUFFERS --------------- ////// vec4 data = texture2D(colortex1,texcoord); vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); // albedo, masks vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); // normals, lightmaps // vec4 dataUnpacked2 = vec4(decodeVec2(data.z),decodeVec2(data.w)); vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x)); vec2 lightmap = dataUnpacked1.yz; vec3 normal = decode(dataUnpacked0.yw); ////// --------------- UNPACK TRANSLUCENT GBUFFERS --------------- ////// // vec4 dataTranslucent = texture2D(colortex11,texcoord); // vec4 dataT_Unpacked0 = vec4(decodeVec2(dataTranslucent.x),decodeVec2(dataTranslucent.y)); // vec4 dataT_Unpacked1 = vec4(decodeVec2(dataTranslucent.z),decodeVec2(dataTranslucent.w)); // vec4 dataT_Unpacked2 = vec4(decodeVec2(dataTranslucent.z),decodeVec2(dataTranslucent.w)); ////// --------------- UNPACK MISC --------------- ////// vec4 SpecularTex = texture2D(colortex8,texcoord); float LabSSS = clamp((-65.0 + SpecularTex.z * 255.0) / 190.0 ,0.0,1.0); vec4 normalAndAO = texture2D(colortex15,texcoord); vec3 FlatNormals = normalAndAO.rgb * 2.0 - 1.0; vec3 slopednormal = normal; #ifdef POM #ifdef Horrible_slope_normals vec3 ApproximatedFlatNormal = normalize(cross(dFdx(p3), dFdy(p3))); // it uses depth that has POM written to it. slopednormal = normalize(clamp(normal, ApproximatedFlatNormal*2.0 - 1.0, ApproximatedFlatNormal*2.0 + 1.0) ); #endif #endif float vanilla_AO = normalAndAO.a; normalAndAO.a = clamp(pow(normalAndAO.a*5,4),0,1); bool translucent = abs(dataUnpacked1.w-0.5) <0.01; // Strong translucency bool translucent2 = abs(dataUnpacked1.w-0.6) <0.01; // Weak translucency bool translucent3 = abs(dataUnpacked1.w-0.55) <0.01; // all blocks bool translucent4 = abs(dataUnpacked1.w-0.65) <0.01; // Weak translucency bool entities = abs(dataUnpacked1.w-0.45) < 0.01; bool hand = abs(dataUnpacked1.w-0.75) < 0.01; bool blocklights = abs(dataUnpacked1.w-0.8) <0.01; // vec3 AO = vec3(1.0); float SkySSS = 0.0; vec3 filtered = vec3(1.412,1.0,0.0); if (!hand) filtered = texture2D(colortex3,texcoord).rgb; vec3 ambientCoefs = normal/dot(abs(normal),vec3(1.)); float lightleakfix = clamp(eyeBrightness.y/240.0 + lightmap.y,0.0,1.0); vec3 DirectLightColor = (lightCol.rgb/80.0); DirectLightColor *= clamp(abs(WsunVec.y)*2,0.,1.); vec3 AmbientLightColor = avgAmbient; float cloudShadow = 1.0; if ( z >= 1.) { //sky #ifdef Compositing_Sky gl_FragData[0].rgb = vec3(CompSky_R, CompSky_G, CompSky_B); #else vec3 background = vec3(0.0); vec3 orbitstar = vec3(np3.x,abs(np3.y),np3.z); orbitstar.x -= WsunVec.x*0.2; background += stars(orbitstar) * 5.0 ; #ifndef ambientLight_only background += drawSun(dot(lightCol.a * WsunVec, np3),0, DirectLightColor,vec3(0.0)) ; // sun background += drawSun(dot(lightCol.a * -WsunVec, np3),0, blackbody2(Moon_temp)/500.,vec3(0.0)); // moon #endif background *= clamp( (np3.y+ 0.02)*5.0 + (eyeAltitude - 319)/800000 ,0.0,1.0); vec3 skyTEX = skyFromTex(np3,colortex4)/150.0 * 5.0; background += skyTEX; // eclipse // color *=max(1.0 - drawSun(dot(lightCol.a * WsunVec, (np3-0.0002)*1.001),0, vec3(1),vec3(0.0)),0.0); vec4 cloud = texture2D_bicubic(colortex0,texcoord*CLOUDS_QUALITY); background = background*cloud.a + cloud.rgb; gl_FragData[0].rgb = clamp(fp10Dither(background ,triangularize(noise)),0.0,65000.); #endif }else{//land ////// ----- direct ----- ////// vec3 Direct_lighting = vec3(1.0); float Shadows = clamp(1.0 - filtered.b,0.0,1.0); float NdotL = dot(slopednormal,WsunVec); NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0); if (abs(filtered.y-0.1) < 0.0004 && !iswater) Shadows = clamp((lightmap.y-0.85)*25,0,1); float SHADOWBLOCKERDEPTBH = filtered.y; //if (abs(filtered.y-0.1) < 0.0004 && !iswater) SHADOWBLOCKERDEPTBH = 1.0-clamp((lightmap.y-0.85)*25,0,1); vec3 SSS = vec3(0.0); if (NdotL > 0.001) { vec3 p3_shadow = mat3(gbufferModelViewInverse) * fragpos_handfix + gbufferModelViewInverse[3].xyz; GriAndEminShadowFix(p3_shadow, viewToWorld(FlatNormals), normalAndAO.a, lightmap.y, entities); vec3 projectedShadowPosition = mat3(shadowModelView) * p3_shadow + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; //apply distortion float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; // Shadows = 0.0; vec3 shadew = projectedShadowPosition.xyz; //do shadows only if on shadow map if (abs(shadew.x) < 1.0-1.5/shadowMapResolution && abs(shadew.y) < 1.0-1.5/shadowMapResolution && abs(shadew.z) < 6.0){ float diffthresh = 0.0; // if(hand && eyeBrightness.y/240. > 0.0) diffthresh = 0.0003; projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5); Shadows = 0.0; float rdMul = filtered.x*distortFactor*d0*k/shadowMapResolution; for(int i = 0; i < SHADOW_FILTER_SAMPLE_COUNT; i++){ // if(hand) noise = 0.0; vec2 offsetS = tapLocation(i,SHADOW_FILTER_SAMPLE_COUNT,1.618,noise,0.0); float weight = 1.0+(i+noise)*rdMul/SHADOW_FILTER_SAMPLE_COUNT*shadowMapResolution; float isShadow = shadow2D(shadow,vec3(projectedShadowPosition + vec3(rdMul*offsetS,-diffthresh*weight))).x; Shadows += isShadow/SHADOW_FILTER_SAMPLE_COUNT; } } } #ifdef Sub_surface_scattering #ifdef Variable_Penumbra_Shadows SSS = SubsurfaceScattering_sun(albedo, SHADOWBLOCKERDEPTBH, LabSSS, clamp(dot(np3, WsunVec),0.0,1.0)) ; // if (isEyeInWater == 0) SSS *= lightleakfix; // light leak fix #endif if (!hand){ if (abs(filtered.y-0.1) < 0.0004 && LabSSS < 0.0 ) SSS = vec3(0.0); #ifdef SCREENSPACE_CONTACT_SHADOWS vec3 vec = lightCol.a*sunVec; float screenShadow = rayTraceShadow(vec, fragpos_rtshadow, interleaved_gradientNoise()); screenShadow *= screenShadow ; #ifdef Variable_Penumbra_Shadows Shadows = min(screenShadow, Shadows + luma(SSS)); if (abs(filtered.y-0.1) < 0.0004 ) SSS *= vec3(Shadows); #endif // #else // if (abs(filtered.y-0.1) < 0.0004 && LabSSS > 0.0 ) SSS = clamp((lightmap.y-0.87)*25,0,1) * clamp(pow(1+dot(WsunVec,normal),25),0,1) * vec3(1); #endif } #ifdef Variable_Penumbra_Shadows SSS *= 1.0-NdotL*Shadows; #endif #else SSS = vec3(0.0); #endif #ifdef VOLUMETRIC_CLOUDS #ifdef CLOUDS_SHADOWS cloudShadow = GetCloudShadow(p3); Shadows *= cloudShadow; SSS *= cloudShadow; #endif #endif ////// ----- indirect ----- ////// vec3 Indirect_lighting = vec3(1.0); // float skylight = clamp(abs(normal.y+1),0.0,1.0); float skylight = clamp(abs(ambientCoefs.y+1.0),0.35,2.0); // float skylight = clamp(abs(ambientCoefs.y+0.5),0.35,2.0); #if indirect_effect == 2 || indirect_effect == 3 || indirect_effect == 4 if (!hand) skylight = 1.0; #endif // do this to make underwater shading easier. vec2 newLightmap = lightmap.xy; if((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)) newLightmap.y = min(newLightmap.y+0.1,1.0); #ifndef ambientSSS_view Indirect_lighting = DoAmbientLighting(AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), newLightmap.xy, skylight); #endif vec3 AO = vec3(1.0); vec3 debug = vec3(0.0); // vanilla AO #if indirect_effect == 0 // AO = vec3(mix(1.0 - exp2(-5 * pow(1-vanilla_AO,3)), 1.0, pow(newLightmap.x,4))) ; AO = vec3( exp( (vanilla_AO*vanilla_AO) * -5) ) ; #endif // SSAO + vanilla AO #if indirect_effect == 1 // AO *= mix(1.0 - exp2(-5 * pow(1-vanilla_AO,3)),1.0, pow(newLightmap.x,4)); AO = vec3( exp( (vanilla_AO*vanilla_AO) * -3) ) ; if (!hand) ssAO(AO, SkySSS, fragpos, 1.0, blueNoise(gl_FragCoord.xy).rg, FlatNormals , texcoord, ambientCoefs, newLightmap.xy); #endif // GTAO #if indirect_effect == 2 int seed = (frameCounter%40000); vec2 r2 = fract(R2_samples(seed) + blueNoise(gl_FragCoord.xy).rg); if (!hand) AO = ambient_occlusion(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z), fragpos, worldToView(slopednormal), r2, debug) * vec3(1.0); #endif // RTAO #if indirect_effect == 3 if (!hand) rtAO(AO, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, newLightmap.y, NdotL*Shadows); #endif // SSGI #if indirect_effect == 4 if (!hand) rtGI(Indirect_lighting, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, newLightmap.y, albedo); #endif #ifndef AO_in_sunlight AO = mix(AO,vec3(1.0), min(NdotL*Shadows,1.0)); #endif Indirect_lighting *= AO; #ifdef Ambient_SSS #if indirect_effect != 1 if (!hand) ScreenSpace_SSS(SkySSS, fragpos, blueNoise(gl_FragCoord.xy).rg, FlatNormals); #endif Indirect_lighting += SubsurfaceScattering_sky(albedo, SkySSS, LabSSS) * ((AmbientLightColor* 2.0 * ambient_brightness)* 8./150.) * pow(newLightmap.y,3) * pow(1.0-clamp(abs(ambientCoefs.y+0.5),0.0,1.0),0.1) ; // Indirect_lighting += SubsurfaceScattering_sky(albedo, SkySSS, LabSSS) * ((AmbientLightColor* 2.0 * ambient_brightness)* 8./150.) * pow(newLightmap.y,3); #endif ////// ----- Under Water Shading ----- ////// vec3 waterabsorb_speculars = vec3(1); if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){ vec3 fragpos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z0)); float Vdiff = distance(fragpos,fragpos0); float VdotU = np3.y; float estimatedDepth = Vdiff * abs(VdotU); //assuming water plane estimatedDepth = estimatedDepth; // make it such that the estimated depth flips to be correct when entering water. if (isEyeInWater == 1) estimatedDepth = (1.0-lightmap.y)*16.0; float estimatedSunDepth = Vdiff; //assuming water plane vec3 Absorbtion = exp2(-totEpsilon*estimatedDepth); // caustics... float Direct_caustics = waterCaustics(mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition, WsunVec); float Ambient_Caustics = waterCaustics(mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition, vec3(0.5, 1.0, 0.5)); // apply caustics to the lightting DirectLightColor *= 0.5 + max(pow(Direct_caustics*2,2),0.0); // Indirect_lighting *= 0.5 + max(pow(Ambient_Caustics,2),0.0); // directLightCol *= Direct_caustics; // Indirect_lighting *= Ambient_Caustics*0.5+0.5; // apply water absorbtion to the lighting // waterabsorb_speculars.rgb *= Absorbtion; DirectLightColor *= Absorbtion; // Indirect_lighting *= Absorbtion; } ////// ----- Finalize ----- ////// #ifdef Seasons #ifdef Snowy_Winter vec3 snow_p3 = p3 + cameraPosition; float SnowPatches = densityAtPosSNOW(vec3(snow_p3.x,snow_p3.y/48.,snow_p3.z) *250); SnowPatches = 1.0 - clamp( exp(pow(SnowPatches,3.5) * -100.0) ,0,1); SnowPatches *= clamp(sqrt(normal.y),0,1) * clamp(pow(lightmap.y,25)*25,0,1); if(!hand && !iswater){ albedo = mix(albedo, vec3(0.8,0.9,1.0), SnowPatches); SpecularTex.rg = mix(SpecularTex.rg, vec2(1,0.05), SnowPatches); } #endif #endif #ifdef ambientLight_only DirectLightColor = vec3(0.0); #endif Direct_lighting = DoDirectLighting(DirectLightColor, Shadows, NdotL, 0.0); //combine all light sources vec3 FINAL_COLOR = Indirect_lighting + Direct_lighting; #ifdef Variable_Penumbra_Shadows FINAL_COLOR += SSS*DirectLightColor * lightleakfix; #endif #ifndef ambientSSS_view FINAL_COLOR *= albedo; #endif #ifdef Specular_Reflections MaterialReflections(FINAL_COLOR, SpecularTex.r, SpecularTex.ggg, albedo, WsunVec, (Shadows*NdotL)*DirectLightColor, lightmap.y, slopednormal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg, interleaved_gradientNoise()), hand, entities); #endif // #ifdef LabPBR_Emissives LabEmission(FINAL_COLOR, albedo, SpecularTex.a); // #endif gl_FragData[0].rgb = FINAL_COLOR; } ////// ----- Apply Clouds ----- ////// // gl_FragData[0].rgb = gl_FragData[0].rgb *cloud.a + cloud.rgb; ////// ----- Under Water Fog ----- ////// if (iswater){ vec3 fragpos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-vec2(tempOffset)*texelSize*0.5,z0)); float Vdiff = distance(fragpos,fragpos0); float VdotU = np3.y; float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane float custom_lightmap_T = pow(texture2D(colortex14, texcoord).a,1.5); vec3 ambientColVol = (avgAmbient * 8./150./1.5) * max(custom_lightmap_T,MIN_LIGHT_AMOUNT*0.001); vec3 lightColVol = (lightCol.rgb / 80.) ; if (isEyeInWater == 0) waterVolumetrics(gl_FragData[0].rgb, fragpos0, fragpos, estimatedDepth , estimatedSunDepth, Vdiff, noise, totEpsilon, scatterCoef, ambientColVol, lightColVol, dot(np3, WsunVec)); } // gl_FragData[0].rgb = worldToView(normal); if(z >= 1) gl_FragData[0].rgb = vec3(0.5); // if (abs(filtered.b-0.1) < 0.0004 ) gl_FragData[0].rgb = vec3(0,1,0); /* DRAWBUFFERS:3 */ }