#include "/lib/settings.glsl" // #if defined END_SHADER || defined NETHER_SHADER // #undef IS_LPV_ENABLED // #endif #ifdef IS_LPV_ENABLED #extension GL_EXT_shader_image_load_store: enable #extension GL_ARB_shading_language_packing: enable #endif #include "/lib/res_params.glsl" varying vec4 lmtexcoord; varying vec4 color; uniform vec4 entityColor; #ifdef OVERWORLD_SHADER const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #ifdef TRANSLUCENT_COLORED_SHADOWS uniform sampler2D shadowcolor0; uniform sampler2DShadow shadowtex0; uniform sampler2DShadow shadowtex1; #endif uniform float lightSign; flat varying vec3 WsunVec; flat varying vec3 averageSkyCol_Clouds; flat varying vec4 lightCol; #endif flat varying float HELD_ITEM_BRIGHTNESS; uniform sampler2D noisetex; uniform sampler2D depthtex1; uniform sampler2D depthtex0; #ifdef DISTANT_HORIZONS uniform sampler2D dhDepthTex1; #endif uniform sampler2D colortex7; uniform sampler2D colortex12; uniform sampler2D colortex14; uniform sampler2D colortex5; uniform sampler2D colortex3; uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D texture; uniform sampler2D specular; uniform sampler2D normals; #ifdef IS_LPV_ENABLED uniform usampler1D texBlockData; uniform sampler3D texLpv1; uniform sampler3D texLpv2; #endif varying vec4 tangent; varying vec4 normalMat; varying vec3 binormal; varying vec3 flatnormal; #ifdef LARGE_WAVE_DISPLACEMENT varying vec3 shitnormal; #endif flat varying float exposure; uniform vec3 sunVec; uniform float near; // uniform float far; uniform float sunElevation; uniform int isEyeInWater; uniform float rainStrength; uniform float skyIntensityNight; uniform float skyIntensity; uniform ivec2 eyeBrightnessSmooth; uniform float nightVision; uniform int frameCounter; uniform float frameTimeCounter; uniform vec2 texelSize; uniform int framemod8; uniform float viewWidth; uniform float viewHeight; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; uniform float moonIntensity; uniform float sunIntensity; uniform vec3 sunColor; uniform vec3 nsunColor; #include "/lib/util.glsl" #include "/lib/Shadow_Params.glsl" #include "/lib/color_transforms.glsl" #include "/lib/projections.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/waterBump.glsl" #ifdef OVERWORLD_SHADER flat varying float Flashing; #include "/lib/lightning_stuff.glsl" #ifdef Daily_Weather flat varying vec4 dailyWeatherParams0; flat varying vec4 dailyWeatherParams1; #else vec4 dailyWeatherParams0 = vec4(CloudLayer0_coverage, CloudLayer1_coverage, CloudLayer2_coverage, 0.0); vec4 dailyWeatherParams1 = vec4(CloudLayer0_density, CloudLayer1_density, CloudLayer2_density, 0.0); #endif #define CLOUDSHADOWSONLY #include "/lib/volumetricClouds.glsl" #endif #ifdef END_SHADER #include "/lib/end_fog.glsl" #endif #ifdef IS_LPV_ENABLED uniform int heldItemId; uniform int heldItemId2; #include "/lib/hsv.glsl" #include "/lib/lpv_common.glsl" #include "/lib/lpv_render.glsl" #endif #include "/lib/diffuse_lighting.glsl" float interleaved_gradientNoise_temporal(){ #ifdef TAA return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y ) + 1.0/1.6180339887 * frameCounter); #else return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y ) + 1.0/1.6180339887); #endif } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)); return noise; } float R2_dither(){ vec2 coord = gl_FragCoord.xy ; #ifdef TAA coord += + (frameCounter%40000) * 2.0; #endif vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * coord.x + alpha.y * coord.y ) ; } float blueNoise(){ #ifdef TAA return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); #else return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887); #endif } #include "/lib/TAA_jitter.glsl" #define PW_DEPTH 1.5 //[0.5 1.0 1.5 2.0 2.5 3.0] #define PW_POINTS 2 //[2 4 6 8 16 32] varying vec3 viewVector; vec3 getParallaxDisplacement(vec3 posxz) { vec3 parallaxPos = posxz; vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH; // float waterHeight = (1.0 - (getWaterHeightmap(posxz.xz)*0.5+0.5)) * 2.0 - 1.0; float waterHeight = getWaterHeightmap(posxz.xz) * 2.0; parallaxPos.xz -= waterHeight * vec; return parallaxPos; } vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){ float bumpmult = puddle_values; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); // return normalize(bump*tbnMatrix); } vec2 CleanSample( int samples, float totalSamples, float noise ){ // this will be used to make 1 full rotation of the spiral. the mulitplication is so it does nearly a single rotation, instead of going past where it started float variance = noise * 0.897; // for every sample input, it will have variance applied to it. float variedSamples = float(samples) + variance; // for every sample, the sample position must change its distance from the origin. // otherwise, you will just have a circle. float spiralShape = pow(variedSamples / (totalSamples + variance),0.5); float shape = 2.26; // this is very important. 2.26 is very specific float theta = variedSamples * (PI * shape); float x = cos(theta) * spiralShape; float y = sin(theta) * spiralShape; return vec2(x, y); } vec3 viewToWorld(vec3 viewPos) { vec4 pos; pos.xyz = viewPos; pos.w = 0.0; pos = gbufferModelViewInverse * pos ; return pos.xyz; } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } vec4 encode (vec3 n, vec2 lightmaps){ n.xy = n.xy / dot(abs(n), vec3(1.0)); n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy; vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0); return vec4(encn,vec2(lightmaps.x,lightmaps.y)); } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } float encodeVec2(float x,float y){ return encodeVec2(vec2(x,y)); } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } uniform float dhFarPlane; #include "/lib/DistantHorizons_projections.glsl" // #undef BASIC_SHADOW_FILTER #ifdef OVERWORLD_SHADER float ComputeShadowMap(inout vec3 directLightColor, vec3 playerPos, float maxDistFade, float noise){ if(maxDistFade <= 0.0) return 1.0; // setup shadow projection vec3 projectedShadowPosition = mat3(shadowModelView) * playerPos + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; // un-distort #ifdef DISTORT_SHADOWMAP float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; #else float distortFactor = 1.0; #endif // hamburger projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5); float shadowmap = 0.0; vec3 translucentTint = vec3(0.0); #ifndef HAND projectedShadowPosition.z -= 0.0001; #endif #if defined ENTITIES projectedShadowPosition.z -= 0.0002; #endif #ifdef BASIC_SHADOW_FILTER int samples = int(SHADOW_FILTER_SAMPLE_COUNT * 0.5); float rdMul = 14.0*distortFactor*d0*k/shadowMapResolution; for(int i = 0; i < samples; i++){ vec2 offsetS = CleanSample(i, samples - 1, noise) * 0.3; projectedShadowPosition.xy += rdMul*offsetS; #else int samples = 1; #endif #ifdef TRANSLUCENT_COLORED_SHADOWS // determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z) * 2.0,0.0,1.0),2.0); // get opaque shadow data to get opaque data from translucent shadows. float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x; shadowmap += max(opaqueShadow, shadowDepthDiff); // get translucent shadow data vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy); // this curve simply looked the nicest. it has no other meaning. float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2); // normalize the color to remove luminance, and keep the hue. remove all opaque color. // mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster. translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * shadowAlpha; // make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0 translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff); #else shadowmap += shadow2D(shadow, projectedShadowPosition).x; #endif #ifdef BASIC_SHADOW_FILTER } #endif #ifdef TRANSLUCENT_COLORED_SHADOWS // tint the lightsource color with the translucent shadow color directLightColor *= mix(vec3(1.0), translucentTint.rgb / samples, maxDistFade); #endif return mix(1.0, shadowmap / samples, maxDistFade); } #endif void convertHandDepth(inout float depth) { float ndcDepth = depth * 2.0 - 1.0; ndcDepth /= MC_HAND_DEPTH; depth = ndcDepth * 0.5 + 0.5; } void Emission( inout vec3 Lighting, vec3 Albedo, float Emission, float exposure ){ // float autoBrightnessAdjust = mix(5.0, 100.0, clamp(exp(-10.0*exposure),0.0,1.0)); if( Emission < 254.5/255.0) Lighting = mix(Lighting, Albedo * 5.0 * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why } uniform vec3 eyePosition; #define FORWARD_SPECULAR #define FORWARD_ENVIORNMENT_REFLECTION #define FORWARD_BACKGROUND_REFLECTION #define FORWARD_ROUGH_REFLECTION #include "/lib/specular.glsl" //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// /* RENDERTARGETS:2,7,11,14 */ void main() { if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 ) { vec3 FragCoord = gl_FragCoord.xyz; #ifdef HAND convertHandDepth(FragCoord.z); #endif vec2 tempOffset = offsets[framemod8]; vec3 viewPos = toScreenSpace(FragCoord*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5, 0.0)); vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// MATERIAL MASKS //////////////////////////////// //////////////////////////////////////////////////////////////////////////////// float MATERIALS = normalMat.w; // 1.0 = water mask // 0.9 = entity mask // 0.8 = reflective entities // 0.7 = reflective blocks // 0.1 = hand mask #ifdef HAND MATERIALS = 0.1; #endif // bool isHand = abs(MATERIALS - 0.1) < 0.01; bool isWater = MATERIALS > 0.99; bool isReflectiveEntity = abs(MATERIALS - 0.8) < 0.01; bool isReflective = abs(MATERIALS - 0.7) < 0.01 || isWater || isReflectiveEntity; bool isEntity = abs(MATERIALS - 0.9) < 0.01 || isReflectiveEntity; //////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// ALBEDO ///////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// gl_FragData[0] = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color; float UnchangedAlpha = gl_FragData[0].a; // gl_FragData[0].a = pow(gl_FragData[0].a,3); #ifdef WhiteWorld gl_FragData[0].rgb = vec3(0.5); gl_FragData[0].a = 1.0; #endif vec3 Albedo = toLinear(gl_FragData[0].rgb); #ifndef WhiteWorld #ifdef Vanilla_like_water if (isWater) Albedo *= sqrt(luma(Albedo)); #else if (isWater){ Albedo = vec3(0.0); gl_FragData[0].a = 1.0/255.0; } #endif #endif #ifdef ENTITIES Albedo.rgb = mix(Albedo.rgb, entityColor.rgb, clamp(entityColor.a*1.5,0,1)); #endif vec4 GLASS_TINT_COLORS = vec4(Albedo, UnchangedAlpha); #ifdef BIOME_TINT_WATER if (isWater) GLASS_TINT_COLORS.rgb = toLinear(color.rgb); #endif //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// NORMALS /////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// vec3 normal = normalMat.xyz; // in viewSpace #ifdef LARGE_WAVE_DISPLACEMENT if (isWater){ normal = viewToWorld(normal) ; normal.xz = shitnormal.xy; normal = worldToView(normal); } #endif vec3 worldSpaceNormal = viewToWorld(normal).xyz; vec2 TangentNormal = vec2(0); // for refractions vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w); mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x, tangent.y, tangent2.y, normal.y, tangent.z, tangent2.z, normal.z); vec3 NormalTex = vec3(texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).xy,0.0); NormalTex.xy = NormalTex.xy*2.0-1.0; NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0); #ifndef HAND if (isWater){ vec3 posxz = (mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz) + cameraPosition; // make the waves flow in the direction the water faces, except for perfectly up facing parts. if(abs(worldSpaceNormal.y) < 0.9995) posxz.xz -= posxz.y + normalize(worldSpaceNormal.xz*10.0) * frameTimeCounter * 3.0 * WATER_WAVE_SPEED; posxz.xyz = getParallaxDisplacement(posxz); vec3 bump = normalize(getWaveNormal(posxz, false)); float bumpmult = 10.0 * WATER_WAVE_STRENGTH; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); NormalTex.xyz = bump; } #endif // tangent space normals for refraction TangentNormal = NormalTex.xy; normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0); // TangentNormal = clamp(TangentNormal + (blueNoise()*2.0-1.0)*0.005,-1.0,1.0); gl_FragData[2] = vec4(encodeVec2(TangentNormal*0.5+0.5), encodeVec2(GLASS_TINT_COLORS.rg), encodeVec2(GLASS_TINT_COLORS.ba), 1.0); //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// SPECULARS ///////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// vec3 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rga; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// DIFFUSE LIGHTING ////////////////////////////// //////////////////////////////////////////////////////////////////////////////// vec2 lightmap = lmtexcoord.zw; // lightmap.y = 1.0; #ifndef OVERWORLD_SHADER lightmap.y = 1.0; #endif #if defined Hand_Held_lights && !defined LPV_ENABLED #ifdef IS_IRIS vec3 playerCamPos = eyePosition; #else vec3 playerCamPos = cameraPosition; #endif if(HELD_ITEM_BRIGHTNESS > 0.0){ float pointLight = clamp(1.0-length((feetPlayerPos+cameraPosition)-playerCamPos)/HANDHELD_LIGHT_RANGE,0.0,1.0); lightmap.x = mix(lightmap.x , HELD_ITEM_BRIGHTNESS, pointLight*pointLight); } #endif vec3 Indirect_lighting = vec3(0.0); vec3 MinimumLightColor = vec3(1.0); if(isEyeInWater == 1) MinimumLightColor = vec3(10.0); vec3 Direct_lighting = vec3(0.0); #ifdef OVERWORLD_SHADER vec3 DirectLightColor = lightCol.rgb/2400.0; float NdotL = clamp(dot(normal, normalize(WsunVec*mat3(gbufferModelViewInverse))),0.0,1.0); NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0); float Shadows = 1.0; float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / (shadowDistance+16),0.0)*5.0,1.0)); float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / shadowDistance,0.0)*5.0,1.0)); float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0); vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz; Shadows = ComputeShadowMap(DirectLightColor, shadowPlayerPos, shadowMapFalloff, blueNoise()); Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff2); #ifdef CLOUDS_SHADOWS Shadows *= GetCloudShadow(feetPlayerPos+cameraPosition, WsunVec); #endif Direct_lighting = DirectLightColor * NdotL * Shadows; vec3 AmbientLightColor = averageSkyCol_Clouds/900.0; vec3 ambientcoefs = worldSpaceNormal / dot(abs(worldSpaceNormal), vec3(1.0)); float SkylightDir = ambientcoefs.y*1.5; float skylight = max(pow(viewToWorld(flatnormal).y*0.5+0.5,0.1) + SkylightDir, 0.2); AmbientLightColor *= skylight; Indirect_lighting = doIndirectLighting(AmbientLightColor, MinimumLightColor, lightmap.y); #endif #ifdef NETHER_SHADER Indirect_lighting = volumetricsFromTex(normalize(worldSpaceNormal), colortex4, 0).rgb / 1200.0 / 1.5; #endif #ifdef END_SHADER // float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0); // vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds); // float lightningflash = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0; // vec3 lightColors = LightSourceColors(vortexBounds, lightningflash); // float NdotL = clamp(dot(worldSpaceNormal, normalize(-lightPos))*0.5+0.5,0.0,1.0); // NdotL *= NdotL; // Direct_lighting = lightColors * endFogPhase(lightPos) * NdotL; float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0); vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds); float lightningflash = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0; vec3 lightColors = LightSourceColors(vortexBounds, lightningflash); float end_NdotL = clamp(dot(worldSpaceNormal, normalize(-lightPos))*0.5+0.5,0.0,1.0); end_NdotL *= end_NdotL; float fogShadow = GetEndFogShadow(feetPlayerPos+cameraPosition, lightPos); float endPhase = endFogPhase(lightPos); Direct_lighting += lightColors * endPhase * end_NdotL * fogShadow; vec3 AmbientLightColor = vec3(0.3,0.6,1.0) ; Indirect_lighting = AmbientLightColor + 0.7 * AmbientLightColor * dot(worldSpaceNormal, normalize(feetPlayerPos)); Indirect_lighting *= 0.1; #endif ///////////////////////// BLOCKLIGHT LIGHTING OR LPV LIGHTING OR FLOODFILL COLORED LIGHTING #ifdef IS_LPV_ENABLED vec3 normalOffset = vec3(0.0); if (any(greaterThan(abs(worldSpaceNormal), vec3(1.0e-6)))) normalOffset = 0.5*worldSpaceNormal; #if LPV_NORMAL_STRENGTH > 0 if (any(greaterThan(abs(normal), vec3(1.0e-6)))) { vec3 texNormalOffset = -normalOffset + viewToWorld(normal); normalOffset = mix(normalOffset, texNormalOffset, (LPV_NORMAL_STRENGTH*0.01)); } #endif vec3 lpvPos = GetLpvPosition(feetPlayerPos) + normalOffset; #else const vec3 lpvPos = vec3(0.0); #endif Indirect_lighting += doBlockLightLighting( vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, exposure, feetPlayerPos, lpvPos); vec3 FinalColor = (Indirect_lighting + Direct_lighting) * Albedo; #if EMISSIVE_TYPE == 2 || EMISSIVE_TYPE == 3 Emission(FinalColor, Albedo, SpecularTex.b, exposure); #endif //////////////////////////////////////////////////////////////////////////////// //////////////////////////////// SPECULAR LIGHTING ///////////////////////////// //////////////////////////////////////////////////////////////////////////////// #ifdef DAMAGE_BLOCK_EFFECT #undef FORWARD_SPECULAR #endif #ifdef FORWARD_SPECULAR float harcodedF0 = 0.02; // if nothing is chosen, no smoothness and no reflectance vec2 specularValues = vec2(1.0, 0.0); // hardcode specular values for select blocks like glass, water, and slime if(isReflective) specularValues = vec2(1.0, harcodedF0); // detect if the specular texture is used, if it is, overwrite hardcoded values if(SpecularTex.r > 0.0 && SpecularTex.g <= 1.0) specularValues = SpecularTex.rg; float f0 = isReflective ? max(specularValues.g, harcodedF0) : specularValues.g; #ifdef HAND f0 = max(specularValues.g, harcodedF0); #endif float roughness = specularValues.r; if(UnchangedAlpha <= 0.0 && !isReflective) f0 = 0.0; if (f0 > 0.0){ if(isReflective) f0 = max(f0, harcodedF0); float reflectance = 0.0; #if !defined OVERWORLD_SHADER vec3 WsunVec = vec3(0.0); vec3 DirectLightColor = WsunVec; float Shadows = 0.0; #endif vec3 specularReflections = specularReflections(viewPos, normalize(feetPlayerPos), WsunVec, vec3(blueNoise(), vec2(interleaved_gradientNoise_temporal())), viewToWorld(normal), roughness, f0, Albedo, FinalColor*gl_FragData[0].a, DirectLightColor * Shadows, lightmap.y, false, reflectance); gl_FragData[0].a = gl_FragData[0].a + (1.0-gl_FragData[0].a) * reflectance; // invert the alpha blending darkening on the color so you can interpolate between diffuse and specular and keep buffer blending gl_FragData[0].rgb = clamp(specularReflections / gl_FragData[0].a * 0.1,0.0,65000.0); }else{ gl_FragData[0].rgb = clamp(FinalColor * 0.1,0.0,65000.0); } #else gl_FragData[0].rgb = FinalColor*0.1; #endif #if defined DISTANT_HORIZONS && defined DH_OVERDRAW_PREVENTION && !defined HAND bool WATER = texture2D(colortex7, gl_FragCoord.xy*texelSize).a > 0.0 && length(feetPlayerPos) > far-16*4 && texture2D(depthtex1, gl_FragCoord.xy*texelSize).x >= 1.0; if(WATER) gl_FragData[0].a = 0.0; #endif #ifndef HAND gl_FragData[1] = vec4(Albedo, MATERIALS); #endif #if DEBUG_VIEW == debug_DH_WATER_BLENDING if(gl_FragCoord.x*texelSize.x < 0.47) gl_FragData[0] = vec4(0.0); #endif #if DEBUG_VIEW == debug_NORMALS gl_FragData[0].rgb = viewToWorld(normalize(normal.xyz)) * 0.1; gl_FragData[0].a = 1; #endif #if DEBUG_VIEW == debug_INDIRECT gl_FragData[0].rgb = Indirect_lighting * 0.1; #endif #if DEBUG_VIEW == debug_DIRECT gl_FragData[0].rgb = Direct_lighting * 0.1; #endif // gl_FragData[3].a = clamp(lightmap.y,0.0,1.0); gl_FragData[3] = vec4(encodeVec2(lightmap.x, lightmap.y), 1, 1, 1); } }