#include "/lib/settings.glsl" varying vec2 texcoord; uniform vec2 texelSize; uniform sampler2D colortex7; uniform sampler2D colortex14; uniform sampler2D depthtex0; uniform sampler2D noisetex; uniform float viewHeight; uniform float viewWidth; uniform float aspectRatio; uniform float frameTimeCounter; uniform int hideGUI; #include "/lib/color_transforms.glsl" #include "/lib/color_dither.glsl" #include "/lib/res_params.glsl" /* vec4 SampleTextureCatmullRom(sampler2D tex, vec2 uv, vec2 texSize ) { // We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding // down the sample location to get the exact center of our "starting" texel. The starting texel will be at // location [1, 1] in the grid, where [0, 0] is the top left corner. vec2 samplePos = uv * texSize; vec2 texPos1 = floor(samplePos - 0.5) + 0.5; // Compute the fractional offset from our starting texel to our original sample location, which we'll // feed into the Catmull-Rom spline function to get our filter weights. vec2 f = samplePos - texPos1; // Compute the Catmull-Rom weights using the fractional offset that we calculated earlier. // These equations are pre-expanded based on our knowledge of where the texels will be located, // which lets us avoid having to evaluate a piece-wise function. vec2 w0 = f * ( -0.5 + f * (1.0 - 0.5*f)); vec2 w1 = 1.0 + f * f * (-2.5 + 1.5*f); vec2 w2 = f * ( 0.5 + f * (2.0 - 1.5*f) ); vec2 w3 = f * f * (-0.5 + 0.5 * f); // Work out weighting factors and sampling offsets that will let us use bilinear filtering to // simultaneously evaluate the middle 2 samples from the 4x4 grid. vec2 w12 = w1 + w2; vec2 offset12 = w2 / (w1 + w2); // Compute the final UV coordinates we'll use for sampling the texture vec2 texPos0 = texPos1 - vec2(1.0); vec2 texPos3 = texPos1 + vec2(2.0); vec2 texPos12 = texPos1 + offset12; texPos0 *= texelSize; texPos3 *= texelSize; texPos12 *= texelSize; vec4 result = vec4(0.0); result += texture2D(tex, vec2(texPos0.x, texPos0.y)) * w0.x * w0.y; result += texture2D(tex, vec2(texPos12.x, texPos0.y)) * w12.x * w0.y; result += texture2D(tex, vec2(texPos3.x, texPos0.y)) * w3.x * w0.y; result += texture2D(tex, vec2(texPos0.x, texPos12.y)) * w0.x * w12.y; result += texture2D(tex, vec2(texPos12.x, texPos12.y)) * w12.x * w12.y; result += texture2D(tex, vec2(texPos3.x, texPos12.y)) * w3.x * w12.y; result += texture2D(tex, vec2(texPos0.x, texPos3.y)) * w0.x * w3.y; result += texture2D(tex, vec2(texPos12.x, texPos3.y)) * w12.x * w3.y; result += texture2D(tex, vec2(texPos3.x, texPos3.y)) * w3.x * w3.y; return result; } */ float lowerCurve(float x) { float y = 16 * x * (0.5 - x) * 0.1; return clamp(y, 0.0, 1.0); } float upperCurve(float x) { float y = 16 * (0.5 - x) * (x - 1.0) * 0.1; return clamp(y, 0.0, 1.0); } vec3 luminanceCurve(vec3 color){ color.r += LOWER_CURVE * lowerCurve(color.r) + UPPER_CURVE * upperCurve(color.r); color.g += LOWER_CURVE * lowerCurve(color.g) + UPPER_CURVE * upperCurve(color.g); color.b += LOWER_CURVE * lowerCurve(color.b) + UPPER_CURVE * upperCurve(color.b); return color; } vec3 colorGrading(vec3 color) { float grade_luma = dot(color, vec3(1.0 / 3.0)); float shadows_amount = saturate(-6.0 * grade_luma + 2.75); float mids_amount = saturate(-abs(6.0 * grade_luma - 3.0) + 1.25); float highlights_amount = saturate(6.0 * grade_luma - 3.25); vec3 graded_shadows = color * SHADOWS_TARGET * SHADOWS_GRADE_MUL * 1.7320508076; vec3 graded_mids = color * MIDS_TARGET * MIDS_GRADE_MUL * 1.7320508076; vec3 graded_highlights = color * HIGHLIGHTS_TARGET * HIGHLIGHTS_GRADE_MUL * 1.7320508076; return saturate(graded_shadows * shadows_amount + graded_mids * mids_amount + graded_highlights * highlights_amount); } vec3 contrastAdaptiveSharpening(vec3 color, vec2 texcoord){ //Weights : 1 in the center, 0.5 middle, 0.25 corners vec3 albedoCurrent1 = texture2D(colortex7, texcoord + vec2(texelSize.x,texelSize.y)/MC_RENDER_QUALITY*0.5).rgb; vec3 albedoCurrent2 = texture2D(colortex7, texcoord + vec2(texelSize.x,-texelSize.y)/MC_RENDER_QUALITY*0.5).rgb; vec3 albedoCurrent3 = texture2D(colortex7, texcoord + vec2(-texelSize.x,-texelSize.y)/MC_RENDER_QUALITY*0.5).rgb; vec3 albedoCurrent4 = texture2D(colortex7, texcoord + vec2(-texelSize.x,texelSize.y)/MC_RENDER_QUALITY*0.5).rgb; vec3 m1 = -0.5/3.5*color + albedoCurrent1/3.5 + albedoCurrent2/3.5 + albedoCurrent3/3.5 + albedoCurrent4/3.5; vec3 std = abs(color - m1) + abs(albedoCurrent1 - m1) + abs(albedoCurrent2 - m1) + abs(albedoCurrent3 - m1) + abs(albedoCurrent3 - m1) + abs(albedoCurrent4 - m1); float contrast = 1.0 - luma(std)/5.0; color = color*(1.0+(SHARPENING+UPSCALING_SHARPNENING)*contrast) - (SHARPENING+UPSCALING_SHARPNENING)/(1.0-0.5/3.5)*contrast*(m1 - 0.5/3.5*color); return color; } vec3 saturationAndCrosstalk(vec3 color){ float luminance = luma(color); vec3 lumaColDiff = color - luminance; color = color + lumaColDiff*(-luminance*CROSSTALK + SATURATION); return color; } void main() { /* DRAWBUFFERS:7 */ vec3 color = texture2D(colortex7,texcoord).rgb; #ifdef CONTRAST_ADAPTATIVE_SHARPENING color = contrastAdaptiveSharpening(color, texcoord); #endif color = saturationAndCrosstalk(color); #ifdef LUMINANCE_CURVE color = luminanceCurve(color); #endif #ifdef COLOR_GRADING_ENABLED color = colorGrading(color); #endif gl_FragData[0].rgb = clamp(int8Dither(color, texcoord),0.0,1.0); }