// Common constants const float eps = 1e-6; const float e = exp(1.0); const float tau = 2.0 * pi; const float half_pi = 0.5 * pi; const float rcp_pi = 1.0 / pi; const float degree = tau / 360.0; // Size of one degree in radians, useful because radians() is not a constant expression on all platforms const float golden_ratio = 0.5 + 0.5 * sqrt(5.0); const float golden_angle = tau / golden_ratio / golden_ratio; const float hand_depth = 0.56; #if defined TAA && defined TAAU const float taau_render_scale = TAAU_RENDER_SCALE; #else const float taau_render_scale = 1.0; #endif // Helper functions #define rcp(x) (1.0 / (x)) #define clamp01(x) clamp(x, 0.0, 1.0) // free on operation output #define max0(x) max(x, 0.0) #define min1(x) min(x, 1.0) float sqr(float x) { return x * x; } vec2 sqr(vec2 v) { return v * v; } vec3 sqr(vec3 v) { return v * v; } vec4 sqr(vec4 v) { return v * v; } float cube(float x) { return x * x * x; } float max_of(vec2 v) { return max(v.x, v.y); } float max_of(vec3 v) { return max(v.x, max(v.y, v.z)); } float max_of(vec4 v) { return max(v.x, max(v.y, max(v.z, v.w))); } float min_of(vec2 v) { return min(v.x, v.y); } float min_of(vec3 v) { return min(v.x, min(v.y, v.z)); } float min_of(vec4 v) { return min(v.x, min(v.y, min(v.z, v.w))); } float length_squared(vec2 v) { return dot(v, v); } float length_squared(vec3 v) { return dot(v, v); } vec2 normalize_safe(vec2 v) { return v == vec2(0.0) ? v : normalize(v); } vec3 normalize_safe(vec3 v) { return v == vec3(0.0) ? v : normalize(v); } float rcp_length(vec2 v) { return inversesqrt(dot(v, v)); } float rcp_length(vec3 v) { return inversesqrt(dot(v, v)); } float fast_acos(float x) { const float C0 = 1.57018; const float C1 = -0.201877; const float C2 = 0.0464619; float res = (C2 * abs(x) + C1) * abs(x) + C0; // p(x) res *= sqrt(1.0 - abs(x)); return x >= 0 ? res : pi - res; // Undo range reduction } vec2 fast_acos(vec2 v) { return vec2(fast_acos(v.x), fast_acos(v.y)); } uniform vec2 view_res; uniform vec2 view_pixel_size; float linear_step(float edge0, float edge1, float x) { return clamp01((x - edge0) / (edge1 - edge0)); } vec2 linear_step(vec2 edge0, vec2 edge1, vec2 x) { return clamp01((x - edge0) / (edge1 - edge0)); } vec4 project(mat4 m, vec3 pos) { return vec4(m[0].x, m[1].y, m[2].zw) * pos.xyzz + m[3]; } vec3 project_and_divide(mat4 m, vec3 pos) { vec4 homogenous = project(m, pos); return homogenous.xyz / homogenous.w; } vec3 screen_to_view_space(vec3 screen_pos, bool handle_jitter) { vec3 ndc_pos = 2.0 * screen_pos - 1.0; return project_and_divide(gbufferProjectionInverse, ndc_pos); } vec3 view_to_screen_space(vec3 view_pos, bool handle_jitter) { vec3 ndc_pos = project_and_divide(gbufferProjection, view_pos); return ndc_pos * 0.5 + 0.5; } // --------------------- // ambient occlusion // --------------------- #define GTAO_SLICES 2 #define GTAO_HORIZON_STEPS 3 #define GTAO_RADIUS 2.0 #define GTAO_FALLOFF_START 0.75 float integrate_arc(vec2 h, float n, float cos_n) { vec2 tmp = cos_n + 2.0 * h * sin(n) - cos(2.0 * h - n); return 0.25 * (tmp.x + tmp.y); } float calculate_maximum_horizon_angle( vec3 view_slice_dir, vec3 viewer_dir, vec3 screen_pos, vec3 view_pos, float dither ) { const float step_size = GTAO_RADIUS * rcp(float(GTAO_HORIZON_STEPS)); float max_cos_theta = -1.0; vec2 ray_step = (view_to_screen_space(view_pos + view_slice_dir * step_size, true) - screen_pos).xy; vec2 ray_pos = screen_pos.xy + ray_step * (dither + max_of(view_pixel_size) * rcp_length(ray_step)); for (int i = 0; i < GTAO_HORIZON_STEPS; ++i, ray_pos += ray_step) { float depth = texelFetch(depthtex1, ivec2(clamp(ray_pos,0.0,1.0) * view_res * taau_render_scale - 0.5), 0).x; if (depth == 1.0 || depth < hand_depth || depth == screen_pos.z) continue; vec3 offset = screen_to_view_space(vec3(ray_pos, depth), true) - view_pos; float len_sq = length_squared(offset); float norm = inversesqrt(len_sq); float distance_falloff = linear_step(GTAO_FALLOFF_START * GTAO_RADIUS, GTAO_RADIUS, len_sq * norm); float cos_theta = dot(viewer_dir, offset) * norm; cos_theta = mix(cos_theta, -1.0, distance_falloff); max_cos_theta = max(cos_theta, max_cos_theta); } return fast_acos(clamp(max_cos_theta, -1.0, 1.0)); } float ambient_occlusion(vec3 screen_pos, vec3 view_pos, vec3 view_normal, vec2 dither , inout vec3 debug) { float ao = 0.0; vec3 bent_normal = vec3(0.0); // Construct local working space vec3 viewer_dir = normalize(-view_pos); vec3 viewer_right = normalize(cross(vec3(0.0, 1.0, 0.0), viewer_dir)); vec3 viewer_up = cross(viewer_dir, viewer_right); mat3 local_to_view = mat3(viewer_right, viewer_up, viewer_dir); for (int i = 0; i < GTAO_SLICES; ++i) { float slice_angle = (i + dither.x) * (pi / float(GTAO_SLICES)); vec3 slice_dir = vec3(cos(slice_angle), sin(slice_angle), 0.0); vec3 view_slice_dir = local_to_view * slice_dir; vec3 ortho_dir = slice_dir - dot(slice_dir, viewer_dir) * viewer_dir; vec3 axis = cross(slice_dir, viewer_dir); vec3 projected_normal = view_normal - axis * dot(view_normal, axis); float len_sq = dot(projected_normal, projected_normal); float norm = inversesqrt(len_sq); float sgn_gamma = sign(dot(ortho_dir, projected_normal)); float cos_gamma = clamp01(dot(projected_normal, viewer_dir) * norm); float gamma = sgn_gamma * fast_acos(cos_gamma); vec2 max_horizon_angles; max_horizon_angles.x = calculate_maximum_horizon_angle(-view_slice_dir, viewer_dir, screen_pos, view_pos, dither.y); max_horizon_angles.y = calculate_maximum_horizon_angle( view_slice_dir, viewer_dir, screen_pos, view_pos, dither.y); max_horizon_angles = gamma + clamp(vec2(-1.0, 1.0) * max_horizon_angles - gamma, -half_pi, half_pi); vec3 max_horizon_angles2 = mat3(gbufferModelViewInverse) * projected_normal; ao += integrate_arc(max_horizon_angles, gamma, cos_gamma) * len_sq * norm * max_horizon_angles.y; } ao *= rcp(float(GTAO_SLICES)); return ao; }