// #version 120 #extension GL_EXT_gpu_shader4 : enable varying vec4 lmtexcoord; varying vec4 color; uniform sampler2D normals; varying vec4 tangent; varying vec4 normalMat; varying vec3 binormal; varying vec3 viewVector; #include "lib/settings.glsl" #include "/lib/res_params.glsl" uniform sampler2D texture; uniform sampler2D noisetex; uniform sampler2DShadow shadow; // uniform sampler2D gaux2; // uniform sampler2D gaux1; // uniform sampler2D colortex4; uniform sampler2D colortex5; uniform sampler2D depthtex1; uniform float nightVision; uniform vec3 sunVec; uniform float frameTimeCounter; uniform float lightSign; uniform float near; uniform float far; uniform float moonIntensity; uniform float sunIntensity; uniform vec3 sunColor; uniform vec3 nsunColor; uniform vec3 upVec; uniform float sunElevation; uniform float fogAmount; uniform vec2 texelSize; uniform float rainStrength; uniform float skyIntensityNight; uniform float skyIntensity; flat varying vec3 WsunVec; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; uniform int framemod8; uniform sampler2D specular; uniform int frameCounter; uniform int isEyeInWater; flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon) flat varying vec3 avgAmbient; #include "lib/Shadow_Params.glsl" #include "lib/color_transforms.glsl" #include "lib/projections.glsl" #include "lib/sky_gradient.glsl" #include "lib/waterBump.glsl" #include "lib/clouds.glsl" #include "lib/stars.glsl" #include "lib/volumetricClouds.glsl" #include "lib/diffuse_lighting.glsl" float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter); } float R2_dither(){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ; } float interleaved_gradientNoise(){ vec2 coord = gl_FragCoord.xy + (frameCounter%40000); // vec2 coord = gl_FragCoord.xy + frameTimeCounter; // vec2 coord = gl_FragCoord.xy; float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) ); return noise ; } float interleaved_gradientNoise(float temporal){ vec2 coord = gl_FragCoord.xy; float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+temporal); return noise; } const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.), vec2(-1.,3.)/8., vec2(5.0,1.)/8., vec2(-3,-5.)/8., vec2(-5.,5.)/8., vec2(-7.,-1.)/8., vec2(3,7.)/8., vec2(7.,-7.)/8.); #define PW_DEPTH 1.0 //[0.5 1.0 1.5 2.0 2.5 3.0] #define PW_POINTS 1 //[2 4 6 8 16 32] vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) { float waveZ = mix(20.0,0.25,iswater); float waveM = mix(0.0,4.0,iswater); vec3 parallaxPos = posxz; vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH; float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) ; parallaxPos.xz += waterHeight * vec; return parallaxPos; } vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){ float bumpmult = 1; bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); return normalize(bump*tbnMatrix); } vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort) { float alpha = (sampleNumber+jitter)/nb; float angle = jitter*6.28 + alpha * nbRot * 6.28; float sin_v, cos_v; sin_v = sin(angle); cos_v = cos(angle); return vec2(cos_v, sin_v)*sqrt(alpha); } vec3 viewToWorld(vec3 viewPosition) { vec4 pos; pos.xyz = viewPosition; pos.w = 0.0; pos = gbufferModelViewInverse * pos; return pos.xyz; } vec3 worldToView(vec3 worldPos) { vec4 pos = vec4(worldPos, 0.0); pos = gbufferModelView * pos; return pos.xyz; } vec4 encode (vec3 n, vec2 lightmaps){ n.xy = n.xy / dot(abs(n), vec3(1.0)); n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy; vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0); return vec4(encn,vec2(lightmaps.x,lightmaps.y)); } //encoding by jodie float encodeVec2(vec2 a){ const vec2 constant1 = vec2( 1., 256.) / 65535.; vec2 temp = floor( a * 255. ); return temp.x*constant1.x+temp.y*constant1.y; } float encodeVec2(float x,float y){ return encodeVec2(vec2(x,y)); } float invLinZ (float lindepth){ return -((2.0*near/lindepth)-far-near)/(far-near); } float ld(float dist) { return (2.0 * near) / (far + near - dist * (far - near)); } vec3 rayTrace(vec3 dir,vec3 position,float dither, float fresnel, bool inwater){ float quality = mix(15,SSR_STEPS,fresnel); vec3 clipPosition = toClipSpace3(position); float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ? (-near -position.z) / dir.z : far*sqrt(3.); vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space direction.xy = normalize(direction.xy); //get at which length the ray intersects with the edge of the screen vec3 maxLengths = (step(0.,direction)-clipPosition) / direction; float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z); vec3 stepv = direction * mult / quality*vec3(RENDER_SCALE,1.0); vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither; float minZ = clipPosition.z; float maxZ = spos.z+stepv.z*0.5; spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE; float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases for (int i = 0; i <= int(quality); i++) { #ifdef USE_QUARTER_RES_DEPTH // decode depth buffer float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0); sp = invLinZ(sp); if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp); #else float sp = texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).r; if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp); #endif spos += stepv; //small bias minZ = maxZ-(0.0001/dist)/ld(spos.z); if(inwater) minZ = maxZ-0.0004/ld(spos.z); maxZ += stepv.z; } return vec3(1.1); } vec3 GGX (vec3 n, vec3 v, vec3 l, float r, vec3 F0) { r = pow(r,2.5); // r*=r; vec3 h = l + v; float hn = inversesqrt(dot(h, h)); float dotLH = clamp(dot(h,l)*hn,0.,1.); float dotNH = clamp(dot(h,n)*hn,0.,1.) ; float dotNL = clamp(dot(n,l),0.,1.); float dotNHsq = dotNH*dotNH; float denom = dotNHsq * r - dotNHsq + 1.; float D = r / (3.141592653589793 * denom * denom); vec3 F = F0 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH); float k2 = .25 * r; return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2); } #define PHYSICSMOD_FRAGMENT #include "/lib/oceans.glsl" //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// /* RENDERTARGETS:2,7,11 */ void main() { if (gl_FragCoord.x * texelSize.x < RENDER_SCALE.x && gl_FragCoord.y * texelSize.y < RENDER_SCALE.y ) { vec2 tempOffset = offsets[framemod8]; vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0)); gl_FragData[0] = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color; vec3 Albedo = toLinear(gl_FragData[0].rgb); float iswater = normalMat.w; #ifdef HAND iswater = 0.1; #endif #ifndef Vanilla_like_water if (iswater > 0.9) { Albedo = vec3(0.0); gl_FragData[0] = vec4(vec3(0.0),1.0/255.0); } #endif #ifdef Vanilla_like_water if (iswater > 0.5) { gl_FragData[0].a = luma(Albedo.rgb); Albedo = color.rgb; } #endif vec4 COLORTEST = vec4(Albedo,gl_FragData[0].a); vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 normal = normalMat.xyz; vec2 TangentNormal = vec2(0); // for refractions vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w); mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x, tangent.y, tangent2.y, normal.y, tangent.z, tangent2.z, normal.z); if (iswater > 0.4){ if(physics_iterationsNormal < 1.0){ float bumpmult = 1.; vec3 bump; vec3 posxz = p3+cameraPosition; posxz.xz -= posxz.y; posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*fragpos)) ; bump = normalize(getWaveHeight(posxz.xz,iswater)); TangentNormal = bump.xy*0.5+0.5; // tangent space normals for refraction bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult); normal = normalize(bump * tbnMatrix); }else{ vec3 PhysicsMod_normal = physics_waveNormal(physics_localPosition.xz, physics_localWaviness, physics_gameTime); normal = normalize(worldToView(PhysicsMod_normal) + mix(normal, vec3(0.0), clamp(physics_localWaviness,0.0,1.0))); vec3 worldSpaceNormal = normal.xyz; vec3 bitangent = normalize(cross(tangent.xyz, worldSpaceNormal)); mat3 tbn_new = mat3(tangent.xyz, binormal, worldSpaceNormal); vec3 tangentSpaceNormal = worldSpaceNormal * tbn_new; TangentNormal = tangentSpaceNormal.xy ; } }else{ vec4 NormalTex = texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).rgba; NormalTex.xy = NormalTex.xy*2.0-1.0; NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0) ; TangentNormal = NormalTex.xy*0.5+0.5; normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0); } // cannot encode alpha or it will shit its pants gl_FragData[2] = vec4(encodeVec2(TangentNormal), encodeVec2(COLORTEST.rg), encodeVec2(COLORTEST.ba), 1.0); float NdotL = clamp(lightSign*dot(normal,sunVec) ,0.0,1.0); NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0); float Shadows = 1.0; //compute shadows only if not backface if (NdotL > 0.001) { vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 projectedShadowPosition = mat3(shadowModelView) * p3 + shadowModelView[3].xyz; projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz; //apply distortion float distortFactor = calcDistort(projectedShadowPosition.xy); projectedShadowPosition.xy *= distortFactor; //do shadows only if on shadow map if (abs(projectedShadowPosition.x) < 1.0-1.5/shadowMapResolution && abs(projectedShadowPosition.y) < 1.0-1.5/shadowMapResolution){ const float threshMul = max(2048.0/shadowMapResolution*shadowDistance/128.0,0.95); float distortThresh = (sqrt(1.0-NdotL*NdotL)/NdotL+0.7)/distortFactor; float diffthresh = distortThresh/6000.0*threshMul; projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5,0.5,0.5); Shadows = 0.0; float noise = blueNoise(); float rdMul = 4.0/shadowMapResolution; for(int i = 0; i < 9; i++){ vec2 offsetS = tapLocation(i,9, 1.618,noise,0.0); float weight = 1.0+(i+noise)*rdMul/9.0*shadowMapResolution; Shadows += shadow2D(shadow,vec3(projectedShadowPosition + vec3(rdMul*offsetS,-diffthresh*weight))).x/9.0; } } #ifdef CLOUDS_SHADOWS Shadows *= GetCloudShadow(p3); #endif } vec3 WS_normal = viewToWorld(normal); vec3 ambientCoefs = WS_normal/dot(abs(WS_normal),vec3(1.)); float skylight = clamp(abs(ambientCoefs.y+1),0.35,2.0) ; vec3 Indirect_lighting = DoAmbientLighting(avgAmbient, vec3(TORCH_R,TORCH_G,TORCH_B), lmtexcoord.zw, skylight); vec3 Direct_lighting = DoDirectLighting(lightCol.rgb/80.0, Shadows, NdotL, 0.0); vec3 FinalColor = (Direct_lighting + Indirect_lighting) * Albedo; #ifdef Glass_Tint float alphashit = min(pow(gl_FragData[0].a,2.0),1.0); FinalColor *= alphashit; #endif vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg; SpecularTex = (iswater > 0.0 && iswater < 0.9) && SpecularTex.r > 0.0 && SpecularTex.g < 0.9 ? SpecularTex : vec2(1.0,0.02); if (iswater > 0.0 && (SpecularTex.g > 0.0 || SpecularTex.r > 0.0)){ vec3 Reflections_Final = vec3(0.0); float roughness = max(pow(1.0-SpecularTex.r,2.0),0.05); float f0 = SpecularTex.g; float F0 = f0; vec3 reflectedVector = reflect(normalize(fragpos), normal); float normalDotEye = dot(normal, normalize(fragpos)); float fresnel = pow(clamp(1.0 + normalDotEye,0.0,1.0), 5.0); // float unchangedfresnel = fresnel; // snells window looking thing if(isEyeInWater == 1 && iswater > 0.99) fresnel = clamp(pow(1.66 + normalDotEye,25),0.02,1.0); if(isEyeInWater == 1 && physics_iterationsNormal > 0.0) fresnel = clamp( 1.0 - (pow( normalDotEye * 1.66 ,25)),0.02,1.0); fresnel = mix(F0, 1.0, fresnel); // fresnel = F0 + (1.0 - F0) * fresnel; float indoors = clamp((lmtexcoord.w-0.6)*5.0, 0.0,1.0); vec3 wrefl = mat3(gbufferModelViewInverse)*reflectedVector; // SSR, Sky, and Sun reflections vec4 Reflections = vec4(0.0); vec3 SkyReflection = skyCloudsFromTex(wrefl,colortex4).rgb / 150. * 5.; vec3 SunReflection = Direct_lighting * GGX(normal, -normalize(fragpos), lightSign*sunVec, roughness, vec3(f0)); if(iswater > 0.0){ #ifdef SCREENSPACE_REFLECTIONS vec3 rtPos = rayTrace(reflectedVector,fragpos.xyz, interleaved_gradientNoise(), fresnel, isEyeInWater == 1); if (rtPos.z < 1.){ vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition; previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz; previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5; if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) { Reflections.a = 1.0; Reflections.rgb = texture2D(colortex5,previousPosition.xy).rgb; } } #endif } float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1); Reflections_Final = mix(SkyReflection*indoors, Reflections.rgb, Reflections.a); Reflections_Final = mix(FinalColor, Reflections_Final, fresnel * visibilityFactor); Reflections_Final += SunReflection; gl_FragData[0].rgb = Reflections_Final; //correct alpha channel with fresnel float alpha0 = gl_FragData[0].a; gl_FragData[0].a = -gl_FragData[0].a*fresnel+gl_FragData[0].a+fresnel; if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.); } else { gl_FragData[0].rgb = FinalColor; } #ifndef HAND gl_FragData[1] = vec4(Albedo,iswater); #endif } }