mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-04 00:23:41 +08:00
add new ocean support for phyMod
This commit is contained in:
parent
cfbdedfd4c
commit
b9e432d580
899
shaders/dimensions/physics_ocean.fsh
Normal file
899
shaders/dimensions/physics_ocean.fsh
Normal file
@ -0,0 +1,899 @@
|
||||
#define RENDER_FRAGMENT
|
||||
|
||||
#include "/lib/settings.glsl"
|
||||
|
||||
#ifdef IS_LPV_ENABLED
|
||||
#extension GL_EXT_shader_image_load_store: enable
|
||||
#extension GL_ARB_shading_language_packing: enable
|
||||
#endif
|
||||
|
||||
#include "/lib/physics_ocean.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
|
||||
varying vec3 physics_localPosition;
|
||||
varying float physics_localWaviness;
|
||||
|
||||
varying vec4 lmtexcoord;
|
||||
varying vec4 color;
|
||||
uniform vec4 entityColor;
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
const bool shadowHardwareFiltering = true;
|
||||
uniform sampler2DShadow shadow;
|
||||
|
||||
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
||||
uniform sampler2D shadowcolor0;
|
||||
uniform sampler2DShadow shadowtex0;
|
||||
uniform sampler2DShadow shadowtex1;
|
||||
#endif
|
||||
|
||||
uniform float lightSign;
|
||||
flat varying vec3 WsunVec;
|
||||
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
flat varying vec4 lightCol;
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
flat varying float HELD_ITEM_BRIGHTNESS;
|
||||
|
||||
const bool colortex4MipmapEnabled = true;
|
||||
uniform sampler2D noisetex;
|
||||
uniform sampler2D depthtex1;
|
||||
uniform sampler2D depthtex0;
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
uniform sampler2D dhDepthTex1;
|
||||
#endif
|
||||
uniform sampler2D colortex7;
|
||||
uniform sampler2D colortex12;
|
||||
uniform sampler2D colortex14;
|
||||
uniform sampler2D colortex5;
|
||||
uniform sampler2D colortex3;
|
||||
uniform sampler2D colortex4;
|
||||
uniform sampler2D colortex6;
|
||||
|
||||
uniform sampler2D texture;
|
||||
uniform sampler2D specular;
|
||||
uniform sampler2D normals;
|
||||
|
||||
#ifdef IS_LPV_ENABLED
|
||||
uniform usampler1D texBlockData;
|
||||
uniform sampler3D texLpv1;
|
||||
uniform sampler3D texLpv2;
|
||||
#endif
|
||||
|
||||
varying vec4 tangent;
|
||||
varying vec4 normalMat;
|
||||
varying vec3 binormal;
|
||||
varying vec3 flatnormal;
|
||||
varying vec3 shitnormal;
|
||||
|
||||
|
||||
flat varying float exposure;
|
||||
|
||||
|
||||
uniform vec3 sunVec;
|
||||
uniform float near;
|
||||
// uniform float far;
|
||||
uniform float sunElevation;
|
||||
|
||||
uniform int isEyeInWater;
|
||||
uniform float rainStrength;
|
||||
uniform float skyIntensityNight;
|
||||
uniform float skyIntensity;
|
||||
uniform ivec2 eyeBrightnessSmooth;
|
||||
|
||||
uniform int frameCounter;
|
||||
uniform float frameTimeCounter;
|
||||
uniform vec2 texelSize;
|
||||
uniform int framemod8;
|
||||
|
||||
uniform mat4 gbufferPreviousModelView;
|
||||
uniform vec3 previousCameraPosition;
|
||||
|
||||
|
||||
uniform float moonIntensity;
|
||||
uniform float sunIntensity;
|
||||
uniform vec3 sunColor;
|
||||
uniform vec3 nsunColor;
|
||||
|
||||
#include "/lib/util.glsl"
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
#include "/lib/color_transforms.glsl"
|
||||
#include "/lib/projections.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
#include "/lib/waterBump.glsl"
|
||||
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
flat varying float Flashing;
|
||||
#include "/lib/lightning_stuff.glsl"
|
||||
|
||||
#define CLOUDSHADOWSONLY
|
||||
#include "/lib/volumetricClouds.glsl"
|
||||
#else
|
||||
uniform float nightVision;
|
||||
#endif
|
||||
|
||||
#ifdef END_SHADER
|
||||
#include "/lib/end_fog.glsl"
|
||||
#endif
|
||||
|
||||
#ifdef IS_LPV_ENABLED
|
||||
uniform int heldItemId;
|
||||
uniform int heldItemId2;
|
||||
|
||||
#include "/lib/hsv.glsl"
|
||||
#include "/lib/lpv_common.glsl"
|
||||
#include "/lib/lpv_render.glsl"
|
||||
#endif
|
||||
|
||||
#include "/lib/diffuse_lighting.glsl"
|
||||
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
||||
}
|
||||
vec4 blueNoise(vec2 coord){
|
||||
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
|
||||
}
|
||||
float interleaved_gradientNoise_temporal(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
||||
return noise;
|
||||
}
|
||||
float R2_dither(){
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
|
||||
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
||||
vec2(-1.,3.)/8.,
|
||||
vec2(5.0,1.)/8.,
|
||||
vec2(-3,-5.)/8.,
|
||||
vec2(-5.,5.)/8.,
|
||||
vec2(-7.,-1.)/8.,
|
||||
vec2(3,7.)/8.,
|
||||
vec2(7.,-7.)/8.);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#define PW_DEPTH 1.5 //[0.5 1.0 1.5 2.0 2.5 3.0]
|
||||
#define PW_POINTS 2 //[2 4 6 8 16 32]
|
||||
|
||||
varying vec3 viewVector;
|
||||
vec3 getParallaxDisplacement(vec3 posxz) {
|
||||
|
||||
vec3 parallaxPos = posxz;
|
||||
vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH;
|
||||
// float waterHeight = (1.0 - (getWaterHeightmap(posxz.xz)*0.5+0.5)) * 2.0 - 1.0;
|
||||
float waterHeight = getWaterHeightmap(posxz.xz) * 2.0;
|
||||
parallaxPos.xz -= waterHeight * vec;
|
||||
|
||||
return parallaxPos;
|
||||
}
|
||||
|
||||
|
||||
vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){
|
||||
float bumpmult = puddle_values;
|
||||
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
|
||||
//
|
||||
return normalize(bump*tbnMatrix);
|
||||
}
|
||||
|
||||
vec2 CleanSample(
|
||||
int samples, float totalSamples, float noise
|
||||
){
|
||||
|
||||
// this will be used to make 1 full rotation of the spiral. the mulitplication is so it does nearly a single rotation, instead of going past where it started
|
||||
float variance = noise * 0.897;
|
||||
|
||||
// for every sample input, it will have variance applied to it.
|
||||
float variedSamples = float(samples) + variance;
|
||||
|
||||
// for every sample, the sample position must change its distance from the origin.
|
||||
// otherwise, you will just have a circle.
|
||||
float spiralShape = pow(variedSamples / (totalSamples + variance),0.5);
|
||||
|
||||
float shape = 2.26; // this is very important. 2.26 is very specific
|
||||
float theta = variedSamples * (PI * shape);
|
||||
|
||||
float x = cos(theta) * spiralShape;
|
||||
float y = sin(theta) * spiralShape;
|
||||
|
||||
return vec2(x, y);
|
||||
}
|
||||
|
||||
vec3 viewToWorld(vec3 viewPos) {
|
||||
vec4 pos;
|
||||
pos.xyz = viewPos;
|
||||
pos.w = 0.0;
|
||||
pos = gbufferModelViewInverse * pos;
|
||||
return pos.xyz;
|
||||
}
|
||||
|
||||
vec3 worldToView(vec3 worldPos) {
|
||||
vec4 pos = vec4(worldPos, 0.0);
|
||||
pos = gbufferModelView * pos;
|
||||
return pos.xyz;
|
||||
}
|
||||
vec4 encode (vec3 n, vec2 lightmaps){
|
||||
n.xy = n.xy / dot(abs(n), vec3(1.0));
|
||||
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
|
||||
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
|
||||
|
||||
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
|
||||
}
|
||||
|
||||
//encoding by jodie
|
||||
float encodeVec2(vec2 a){
|
||||
const vec2 constant1 = vec2( 1., 256.) / 65535.;
|
||||
vec2 temp = floor( a * 255. );
|
||||
return temp.x*constant1.x+temp.y*constant1.y;
|
||||
}
|
||||
float encodeVec2(float x,float y){
|
||||
return encodeVec2(vec2(x,y));
|
||||
}
|
||||
|
||||
|
||||
float invLinZ (float lindepth){
|
||||
return -((2.0*near/lindepth)-far-near)/(far-near);
|
||||
}
|
||||
float ld(float dist) {
|
||||
return (2.0 * near) / (far + near - dist * (far - near));
|
||||
}
|
||||
|
||||
vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater, inout float reflectLength){
|
||||
|
||||
float quality = mix(15,SSR_STEPS,fresnel);
|
||||
|
||||
// quality = SSR_STEPS;
|
||||
|
||||
vec3 clipPosition = toClipSpace3(position);
|
||||
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
|
||||
(-near -position.z) / dir.z : far*sqrt(3.);
|
||||
vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
|
||||
direction.xy = normalize(direction.xy);
|
||||
|
||||
//get at which length the ray intersects with the edge of the screen
|
||||
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
|
||||
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z);
|
||||
|
||||
|
||||
vec3 stepv = direction * mult / quality * vec3(RENDER_SCALE,1.0);
|
||||
|
||||
|
||||
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither;
|
||||
float minZ = clipPosition.z;
|
||||
float maxZ = spos.z+stepv.z*0.5;
|
||||
|
||||
spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE;
|
||||
|
||||
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
|
||||
for (int i = 0; i <= int(quality); i++) {
|
||||
|
||||
// decode depth buffer
|
||||
// float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0);
|
||||
|
||||
float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4.0),0).a/65000.0);
|
||||
sp = invLinZ(sp);
|
||||
|
||||
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp);
|
||||
|
||||
|
||||
|
||||
|
||||
spos += stepv;
|
||||
//small bias
|
||||
if(inwater) {
|
||||
minZ = maxZ-0.00035/ld(spos.z);
|
||||
}else{
|
||||
minZ = maxZ-0.0001/max(ld(spos.z), (0.0 + position.z*position.z*0.001));
|
||||
}
|
||||
maxZ += stepv.z;
|
||||
|
||||
|
||||
reflectLength += 1.0 / quality; // for shit
|
||||
}
|
||||
|
||||
return vec3(1.1);
|
||||
}
|
||||
|
||||
float GGX(vec3 n, vec3 v, vec3 l, float r, float f0) {
|
||||
r = max(pow(r,2.5), 0.0001);
|
||||
|
||||
vec3 h = l + v;
|
||||
float hn = inversesqrt(dot(h, h));
|
||||
|
||||
float dotLH = clamp(dot(h,l)*hn,0.,1.);
|
||||
float dotNH = clamp(dot(h,n)*hn,0.,1.) ;
|
||||
float dotNL = clamp(dot(n,l),0.,1.);
|
||||
float dotNHsq = dotNH*dotNH;
|
||||
|
||||
float denom = dotNHsq * r - dotNHsq + 1.;
|
||||
float D = r / (3.141592653589793 * denom * denom);
|
||||
|
||||
float F = f0 + (1. - f0) * exp2((-5.55473*dotLH-6.98316)*dotLH);
|
||||
float k2 = .25 * r;
|
||||
|
||||
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
uniform float dhFarPlane;
|
||||
|
||||
#include "/lib/DistantHorizons_projections.glsl"
|
||||
|
||||
|
||||
|
||||
|
||||
// #undef BASIC_SHADOW_FILTER
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float ComputeShadowMap(inout vec3 directLightColor, vec3 playerPos, float maxDistFade, float noise){
|
||||
|
||||
if(maxDistFade <= 0.0) return 1.0;
|
||||
|
||||
// setup shadow projection
|
||||
vec3 projectedShadowPosition = mat3(shadowModelView) * playerPos + shadowModelView[3].xyz;
|
||||
projectedShadowPosition = diagonal3(shadowProjection) * projectedShadowPosition + shadowProjection[3].xyz;
|
||||
|
||||
// un-distort
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(projectedShadowPosition.xy);
|
||||
projectedShadowPosition.xy *= distortFactor;
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
|
||||
// hamburger
|
||||
projectedShadowPosition = projectedShadowPosition * vec3(0.5,0.5,0.5/6.0) + vec3(0.5);
|
||||
|
||||
float shadowmap = 0.0;
|
||||
vec3 translucentTint = vec3(0.0);
|
||||
|
||||
#ifndef HAND
|
||||
projectedShadowPosition.z -= 0.0001;
|
||||
#endif
|
||||
|
||||
#if defined ENTITIES
|
||||
projectedShadowPosition.z -= 0.0002;
|
||||
#endif
|
||||
|
||||
#ifdef BASIC_SHADOW_FILTER
|
||||
int samples = int(SHADOW_FILTER_SAMPLE_COUNT * 0.5);
|
||||
float rdMul = 14.0*distortFactor*d0*k/shadowMapResolution;
|
||||
|
||||
for(int i = 0; i < samples; i++){
|
||||
vec2 offsetS = CleanSample(i, samples - 1, noise) * 0.3;
|
||||
projectedShadowPosition.xy += rdMul*offsetS;
|
||||
#else
|
||||
int samples = 1;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
||||
|
||||
// determine when opaque shadows are overlapping translucent shadows by getting the difference of opaque depth and translucent depth
|
||||
float shadowDepthDiff = pow(clamp((shadow2D(shadowtex1, projectedShadowPosition).x - projectedShadowPosition.z) * 2.0,0.0,1.0),2.0);
|
||||
|
||||
// get opaque shadow data to get opaque data from translucent shadows.
|
||||
float opaqueShadow = shadow2D(shadowtex0, projectedShadowPosition).x;
|
||||
shadowmap += max(opaqueShadow, shadowDepthDiff);
|
||||
|
||||
// get translucent shadow data
|
||||
vec4 translucentShadow = texture2D(shadowcolor0, projectedShadowPosition.xy);
|
||||
|
||||
// this curve simply looked the nicest. it has no other meaning.
|
||||
float shadowAlpha = pow(1.0 - pow(translucentShadow.a,5.0),0.2);
|
||||
|
||||
// normalize the color to remove luminance, and keep the hue. remove all opaque color.
|
||||
// mulitply shadow alpha to shadow color, but only on surfaces facing the lightsource. this is a tradeoff to protect subsurface scattering's colored shadow tint from shadow bias on the back of the caster.
|
||||
translucentShadow.rgb = max(normalize(translucentShadow.rgb + 0.0001), max(opaqueShadow, 1.0-shadowAlpha)) * shadowAlpha;
|
||||
|
||||
// make it such that full alpha areas that arent in a shadow have a value of 1.0 instead of 0.0
|
||||
translucentTint += mix(translucentShadow.rgb, vec3(1.0), opaqueShadow*shadowDepthDiff);
|
||||
|
||||
#else
|
||||
shadowmap += shadow2D(shadow, projectedShadowPosition).x;
|
||||
#endif
|
||||
|
||||
#ifdef BASIC_SHADOW_FILTER
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef TRANSLUCENT_COLORED_SHADOWS
|
||||
// tint the lightsource color with the translucent shadow color
|
||||
directLightColor *= mix(vec3(1.0), translucentTint.rgb / samples, maxDistFade);
|
||||
#endif
|
||||
|
||||
return mix(1.0, shadowmap / samples, maxDistFade);
|
||||
}
|
||||
#endif
|
||||
|
||||
void convertHandDepth(inout float depth) {
|
||||
float ndcDepth = depth * 2.0 - 1.0;
|
||||
ndcDepth /= MC_HAND_DEPTH;
|
||||
depth = ndcDepth * 0.5 + 0.5;
|
||||
}
|
||||
void Emission(
|
||||
inout vec3 Lighting,
|
||||
vec3 Albedo,
|
||||
float Emission,
|
||||
float exposure
|
||||
){
|
||||
float autoBrightnessAdjust = mix(5.0, 100.0, clamp(exp(-10.0*exposure),0.0,1.0));
|
||||
if( Emission < 254.5/255.0) Lighting = mix(Lighting, Albedo * Emissive_Brightness * autoBrightnessAdjust * 0.1, pow(Emission, Emissive_Curve)); // old method.... idk why
|
||||
}
|
||||
|
||||
/*
|
||||
uniform float viewWidth;
|
||||
uniform float viewHeight;
|
||||
void frisvad(in vec3 n, out vec3 f, out vec3 r){
|
||||
if(n.z < -0.9) {
|
||||
f = vec3(0.,-1,0);
|
||||
r = vec3(-1, 0, 0);
|
||||
} else {
|
||||
float a = 1./(1.+n.z);
|
||||
float b = -n.x*n.y*a;
|
||||
f = vec3(1. - n.x*n.x*a, b, -n.x) ;
|
||||
r = vec3(b, 1. - n.y*n.y*a , -n.y);
|
||||
}
|
||||
}
|
||||
mat3 CoordBase(vec3 n){
|
||||
vec3 x,y;
|
||||
frisvad(n,x,y);
|
||||
return mat3(x,y,n);
|
||||
}
|
||||
vec2 R2_samples(int n){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha * n);
|
||||
}
|
||||
float fma(float a,float b,float c){
|
||||
return a * b + c;
|
||||
}
|
||||
//// thank you Zombye | the paper: https://ggx-research.github.io/publication/2023/06/09/publication-ggx.html
|
||||
vec3 SampleVNDFGGX(
|
||||
vec3 viewerDirection, // Direction pointing towards the viewer, oriented such that +Z corresponds to the surface normal
|
||||
vec2 alpha, // Roughness parameter along X and Y of the distribution
|
||||
float xy // Pair of uniformly distributed numbers in [0, 1)
|
||||
) {
|
||||
// alpha *= alpha;
|
||||
// Transform viewer direction to the hemisphere configuration
|
||||
viewerDirection = normalize(vec3(alpha * viewerDirection.xy, viewerDirection.z));
|
||||
|
||||
// Sample a reflection direction off the hemisphere
|
||||
const float tau = 6.2831853; // 2 * pi
|
||||
float phi = tau * xy;
|
||||
|
||||
float cosTheta = fma(1.0 - xy, 1.0 + viewerDirection.z, -viewerDirection.z) ;
|
||||
float sinTheta = sqrt(clamp(1.0 - cosTheta * cosTheta, 0.0, 1.0));
|
||||
|
||||
// xonk note, i dont know what im doing but this kinda does what i want so whatever
|
||||
float attemptTailClamp = clamp(sinTheta,max(cosTheta-0.25,0), cosTheta);
|
||||
float attemptTailClamp2 = clamp(cosTheta,max(sinTheta-0.25,0), sinTheta);
|
||||
|
||||
vec3 reflected = vec3(vec2(cos(phi), sin(phi)) * attemptTailClamp2, attemptTailClamp);
|
||||
// vec3 reflected = vec3(vec2(cos(phi), sin(phi)) * sinTheta, cosTheta);
|
||||
|
||||
// Evaluate halfway direction
|
||||
// This gives the normal on the hemisphere
|
||||
vec3 halfway = reflected + viewerDirection;
|
||||
|
||||
// Transform the halfway direction back to hemiellispoid configuation
|
||||
// This gives the final sampled normal
|
||||
return normalize(vec3(alpha * halfway.xy, halfway.z));
|
||||
}
|
||||
*/
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
|
||||
|
||||
/* RENDERTARGETS:2,7,11,14 */
|
||||
|
||||
|
||||
void main() {
|
||||
if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 ) {
|
||||
|
||||
vec3 FragCoord = gl_FragCoord.xyz;
|
||||
|
||||
#ifdef HAND
|
||||
convertHandDepth(FragCoord.z);
|
||||
#endif
|
||||
|
||||
vec2 tempOffset = offsets[framemod8];
|
||||
|
||||
vec3 viewPos = toScreenSpace(FragCoord*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5, 0.0));
|
||||
|
||||
vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// MATERIAL MASKS ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
float MATERIALS = normalMat.w;
|
||||
|
||||
// 1.0 = water mask
|
||||
// 0.9 = entity mask
|
||||
// 0.8 = reflective entities
|
||||
// 0.7 = reflective blocks
|
||||
// 0.1 = hand mask
|
||||
|
||||
// #ifdef HAND
|
||||
// MATERIALS = 0.1;
|
||||
// #endif
|
||||
|
||||
// bool isHand = abs(MATERIALS - 0.1) < 0.01;
|
||||
bool isWater = true; //MATERIALS > 0.99;
|
||||
bool isReflectiveEntity = false;//abs(MATERIALS - 0.8) < 0.01;
|
||||
bool isReflective = true;//abs(MATERIALS - 0.7) < 0.01 || isWater || isReflectiveEntity;
|
||||
bool isEntity = false;//abs(MATERIALS - 0.9) < 0.01 || isReflectiveEntity;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////// ALBEDO /////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
gl_FragData[0] = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color;
|
||||
|
||||
float UnchangedAlpha = gl_FragData[0].a;
|
||||
|
||||
#ifdef WhiteWorld
|
||||
gl_FragData[0].rgb = vec3(0.5);
|
||||
gl_FragData[0].a = 1.0;
|
||||
#endif
|
||||
|
||||
vec3 Albedo = toLinear(gl_FragData[0].rgb);
|
||||
|
||||
#ifndef WhiteWorld
|
||||
#ifdef Vanilla_like_water
|
||||
if (isWater) Albedo *= sqrt(luma(Albedo));
|
||||
#else
|
||||
if (isWater){
|
||||
Albedo = vec3(0.0);
|
||||
gl_FragData[0].a = 1.0/255.0;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// #ifdef ENTITIES
|
||||
// Albedo.rgb = mix(Albedo.rgb, entityColor.rgb, clamp(entityColor.a*1.5,0,1));
|
||||
// #endif
|
||||
|
||||
vec4 GLASS_TINT_COLORS = vec4(Albedo, UnchangedAlpha);
|
||||
|
||||
#ifdef BIOME_TINT_WATER
|
||||
if (isWater) GLASS_TINT_COLORS.rgb = toLinear(color.rgb);
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// NORMALS ///////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
vec3 normal = normalMat.xyz; // in viewSpace
|
||||
|
||||
normal = viewToWorld(normal);
|
||||
normal.xz = shitnormal.xy;
|
||||
normal = worldToView(normal);
|
||||
|
||||
vec3 worldSpaceNormal = viewToWorld(normal).xyz;
|
||||
vec2 TangentNormal = vec2(0); // for refractions
|
||||
|
||||
vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w);
|
||||
mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x,
|
||||
tangent.y, tangent2.y, normal.y,
|
||||
tangent.z, tangent2.z, normal.z);
|
||||
|
||||
// vec3 NormalTex = vec3(texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).xy,0.0);
|
||||
// NormalTex.xy = NormalTex.xy*2.0-1.0;
|
||||
// NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)), 0.0, 1.0);
|
||||
|
||||
// tangent space normals for refraction
|
||||
//TangentNormal = NormalTex.xy*0.5+0.5;
|
||||
|
||||
// vec3 posxz = (mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz) + cameraPosition;
|
||||
|
||||
// make the waves flow in the direction the water faces, except for perfectly up facing parts.
|
||||
// if(abs(worldSpaceNormal.y) < 0.9995) posxz.xz -= (posxz.y + frameTimeCounter*3 * WATER_WAVE_SPEED) * normalize(worldSpaceNormal.xz) ;
|
||||
|
||||
// posxz.xyz = getParallaxDisplacement(posxz);
|
||||
// vec3 bump = normalize(getWaveNormal(posxz, false));
|
||||
|
||||
// float bumpmult = 10.0 * WATER_WAVE_STRENGTH;
|
||||
// bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
|
||||
|
||||
// NormalTex.xyz = bump;
|
||||
|
||||
// tangent space normals for refraction
|
||||
// TangentNormal = (bump.xy/3.0)*0.5+0.5;
|
||||
|
||||
|
||||
float waviness = max(physics_localWaviness, 0.02);
|
||||
WavePixelData wave = physics_wavePixel(physics_localPosition.xz, waviness, physics_iterationsNormal, physics_gameTime);
|
||||
vec3 NormalTex = wave.normal;
|
||||
|
||||
// tangent space normals for refraction
|
||||
TangentNormal = NormalTex.xy*0.5+0.5;
|
||||
|
||||
|
||||
// normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0);
|
||||
normal = worldToView(NormalTex.xzy);
|
||||
|
||||
gl_FragData[2] = vec4(encodeVec2(TangentNormal), encodeVec2(GLASS_TINT_COLORS.rg), encodeVec2(GLASS_TINT_COLORS.ba), 1.0);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// SPECULARS /////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
vec3 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rga;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// DIFFUSE LIGHTING //////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
vec2 lightmap = lmtexcoord.zw;
|
||||
|
||||
// lightmap.y = 1.0;
|
||||
|
||||
#ifndef OVERWORLD_SHADER
|
||||
lightmap.y = 1.0;
|
||||
#endif
|
||||
|
||||
#ifdef Hand_Held_lights
|
||||
lightmap.x = max(lightmap.x, HELD_ITEM_BRIGHTNESS*clamp( pow(max(1.0-length(feetPlayerPos)/HANDHELD_LIGHT_RANGE,0.0),1.5),0.0,1.0));
|
||||
#endif
|
||||
|
||||
vec3 Indirect_lighting = vec3(0.0);
|
||||
vec3 MinimumLightColor = vec3(1.0);
|
||||
if(isEyeInWater == 1) MinimumLightColor = vec3(10.0);
|
||||
|
||||
vec3 Direct_lighting = vec3(0.0);
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
vec3 DirectLightColor = lightCol.rgb/80.0;
|
||||
float NdotL = clamp(dot(normal, normalize(WsunVec*mat3(gbufferModelViewInverse))),0.0,1.0); NdotL = clamp((-15 + NdotL*255.0) / 240.0 ,0.0,1.0);
|
||||
float Shadows = 1.0;
|
||||
|
||||
float shadowMapFalloff = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / (shadowDistance+16),0.0)*5.0,1.0));
|
||||
float shadowMapFalloff2 = smoothstep(0.0, 1.0, min(max(1.0 - length(feetPlayerPos) / shadowDistance,0.0)*5.0,1.0));
|
||||
|
||||
float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0);
|
||||
|
||||
vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
|
||||
|
||||
Shadows = ComputeShadowMap(DirectLightColor, shadowPlayerPos, shadowMapFalloff, blueNoise());
|
||||
|
||||
Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff2);
|
||||
|
||||
Shadows *= pow(GetCloudShadow(feetPlayerPos),3);
|
||||
|
||||
Direct_lighting = DirectLightColor * NdotL * Shadows;
|
||||
|
||||
vec3 AmbientLightColor = averageSkyCol_Clouds/30.0;
|
||||
|
||||
vec3 ambientcoefs = worldSpaceNormal / dot(abs(worldSpaceNormal), vec3(1.0));
|
||||
float SkylightDir = ambientcoefs.y*1.5;
|
||||
|
||||
float skylight = max(pow(viewToWorld(flatnormal).y*0.5+0.5,0.1) + SkylightDir, 0.2);
|
||||
AmbientLightColor *= skylight;
|
||||
#endif
|
||||
|
||||
#ifdef NETHER_SHADER
|
||||
// vec3 AmbientLightColor = skyCloudsFromTexLOD2(worldSpaceNormal, colortex4, 6).rgb / 15.0;
|
||||
|
||||
// vec3 up = skyCloudsFromTexLOD2(vec3( 0, 1, 0), colortex4, 6).rgb/ 30.0;
|
||||
// vec3 down = skyCloudsFromTexLOD2(vec3( 0,-1, 0), colortex4, 6).rgb/ 30.0;
|
||||
|
||||
// up *= pow( max( worldSpaceNormal.y, 0), 2);
|
||||
// down *= pow( max(-worldSpaceNormal.y, 0), 2);
|
||||
// AmbientLightColor += up + down;
|
||||
|
||||
vec3 AmbientLightColor = vec3(0.1);
|
||||
#endif
|
||||
|
||||
#ifdef END_SHADER
|
||||
float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0);
|
||||
vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds);
|
||||
|
||||
|
||||
float lightningflash = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0;
|
||||
vec3 lightColors = LightSourceColors(vortexBounds, lightningflash);
|
||||
|
||||
float NdotL = clamp(dot(worldSpaceNormal, normalize(-lightPos))*0.5+0.5,0.0,1.0);
|
||||
|
||||
NdotL *= NdotL;
|
||||
|
||||
Direct_lighting = lightColors * endFogPhase(lightPos) * NdotL;
|
||||
|
||||
vec3 AmbientLightColor = vec3(0.5,0.75,1.0) * 0.9 + 0.1;
|
||||
AmbientLightColor *= clamp(1.5 + dot(worldSpaceNormal, normalize(feetPlayerPos))*0.5,0,2);
|
||||
#endif
|
||||
|
||||
#ifdef IS_LPV_ENABLED
|
||||
vec3 normalOffset = 0.5*worldSpaceNormal;
|
||||
|
||||
#if LPV_NORMAL_STRENGTH > 0
|
||||
if (any(greaterThan(abs(normal), vec3(1.0e-6)))) {
|
||||
vec3 texNormalOffset = -normalOffset + viewToWorld(normal);
|
||||
normalOffset = mix(normalOffset, texNormalOffset, (LPV_NORMAL_STRENGTH*0.01));
|
||||
}
|
||||
#endif
|
||||
|
||||
vec3 lpvPos = GetLpvPosition(feetPlayerPos) + normalOffset;
|
||||
#else
|
||||
const vec3 lpvPos = vec3(0.0);
|
||||
#endif
|
||||
|
||||
Indirect_lighting = DoAmbientLightColor(feetPlayerPos, lpvPos, AmbientLightColor, MinimumLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy, exposure);
|
||||
|
||||
vec3 FinalColor = (Indirect_lighting + Direct_lighting) * Albedo;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// SPECULAR LIGHTING /////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef DAMAGE_BLOCK_EFFECT
|
||||
#undef WATER_REFLECTIONS
|
||||
#endif
|
||||
|
||||
#ifndef OVERWORLD_SHADER
|
||||
#undef WATER_SUN_SPECULAR
|
||||
#endif
|
||||
|
||||
#ifdef WATER_REFLECTIONS
|
||||
// vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg;
|
||||
|
||||
// if nothing is chosen, no smoothness and no reflectance
|
||||
vec2 specularValues = vec2(1.0, 0.0);
|
||||
|
||||
// hardcode specular values for select blocks like glass, water, and slime
|
||||
if(isReflective) specularValues = vec2(1.0, 0.02);
|
||||
|
||||
// detect if the specular texture is used, if it is, overwrite hardcoded values
|
||||
if(SpecularTex.r > 0.0 && SpecularTex.g <= 1.0) specularValues = SpecularTex.rg;
|
||||
|
||||
float roughness = pow(1.0-specularValues.r,2.0);
|
||||
float f0 = isReflective ? max(specularValues.g, 0.02) : specularValues.g;
|
||||
|
||||
#ifdef HAND
|
||||
f0 = max(specularValues.g, 0.02);
|
||||
#endif
|
||||
|
||||
// f0 = SpecularTex.g;
|
||||
// roughness = pow(1.0-specularValues.r,2.0);
|
||||
// f0 = 0.9;
|
||||
// roughness = 0.0;
|
||||
|
||||
vec3 Metals = f0 > 229.5/255.0 ? normalize(Albedo+1e-7) * (dot(Albedo,vec3(0.21, 0.72, 0.07)) * 0.7 + 0.3) : vec3(1.0);
|
||||
|
||||
// make sure zero alpha is not forced to be full alpha by fresnel on items with funny normal padding
|
||||
if(UnchangedAlpha <= 0.0 && !isReflective) f0 = 0.0;
|
||||
|
||||
if (f0 > 0.0){
|
||||
|
||||
if(isReflective) f0 = max(f0, 0.02);
|
||||
|
||||
vec3 Reflections_Final = vec3(0.0);
|
||||
vec4 Reflections = vec4(0.0);
|
||||
vec3 BackgroundReflection = FinalColor;
|
||||
vec3 SunReflection = vec3(0.0);
|
||||
float indoors = pow(1.0-pow(1.0-min(max(lightmap.y-0.6,0.0)*3.0,1.0),0.5),2.0);
|
||||
|
||||
vec3 reflectedVector = reflect(normalize(viewPos), normal);
|
||||
float normalDotEye = dot(normal, normalize(viewPos));
|
||||
|
||||
float fresnel = pow(clamp(1.0 + normalDotEye, 0.0, 1.0),5.0);
|
||||
|
||||
/*
|
||||
int seed = (frameCounter%40000) + frameCounter*2;
|
||||
float noise = fract(R2_samples(seed).y + (1-blueNoise()));
|
||||
mat3 Basis = CoordBase(viewToWorld(normal));
|
||||
vec3 ViewDir = -normalize(feetPlayerPos)*Basis;
|
||||
vec3 SamplePoints = SampleVNDFGGX(ViewDir, vec2(roughness), noise);
|
||||
vec3 Ln = reflect(-ViewDir, SamplePoints);
|
||||
vec3 L = Basis * Ln;
|
||||
fresnel = pow(clamp(1.0 + dot(-Ln, SamplePoints),0.0,1.0), 5.0);
|
||||
*/
|
||||
|
||||
#ifdef SNELLS_WINDOW
|
||||
// snells window looking thing
|
||||
if(isEyeInWater == 1) fresnel = pow(clamp(1.5 + normalDotEye,0.0,1.0), 25.0);
|
||||
#endif
|
||||
|
||||
fresnel = mix(f0, 1.0, fresnel);
|
||||
|
||||
// Sun, Sky, and screen-space reflections
|
||||
#ifdef OVERWORLD_SHADER
|
||||
#ifdef WATER_SUN_SPECULAR
|
||||
SunReflection = Direct_lighting * GGX(normal, -normalize(viewPos), WsunVec*mat3(gbufferModelViewInverse), max(roughness,0.035), f0) * Metals;
|
||||
#endif
|
||||
#ifdef WATER_BACKGROUND_SPECULAR
|
||||
if(isEyeInWater == 0 && !isReflectiveEntity) BackgroundReflection = skyCloudsFromTex(mat3(gbufferModelViewInverse) * reflectedVector, colortex4).rgb / 30.0 * Metals;
|
||||
#endif
|
||||
|
||||
if(isEyeInWater == 1 && isWater) BackgroundReflection.rgb = exp(-8.0 * vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B)) * clamp(WsunVec.y*lightCol.a,0,1);
|
||||
#else
|
||||
#ifdef WATER_BACKGROUND_SPECULAR
|
||||
if(isEyeInWater == 0) BackgroundReflection = skyCloudsFromTexLOD2(mat3(gbufferModelViewInverse) * reflectedVector, colortex4, 0).rgb / 30.0 * Metals;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef SCREENSPACE_REFLECTIONS
|
||||
float reflectLength = 0.0;
|
||||
vec3 rtPos = rayTrace(reflectedVector, viewPos.xyz, interleaved_gradientNoise_temporal(), fresnel, isEyeInWater == 1,reflectLength);
|
||||
if (rtPos.z < 1.0){
|
||||
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
|
||||
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
|
||||
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
|
||||
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
|
||||
Reflections.a = 1.0;
|
||||
Reflections.rgb = texture2D(colortex5, previousPosition.xy).rgb * Metals;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1);
|
||||
|
||||
Reflections_Final = mix(mix(FinalColor, BackgroundReflection, indoors), Reflections.rgb, Reflections.a) * fresnel * visibilityFactor;
|
||||
Reflections_Final += SunReflection;
|
||||
|
||||
//correct alpha channel with fresnel
|
||||
float alpha0 = gl_FragData[0].a;
|
||||
|
||||
gl_FragData[0].a = -gl_FragData[0].a * fresnel + gl_FragData[0].a + fresnel;
|
||||
|
||||
// prevent reflections from being darkened by buffer blending
|
||||
gl_FragData[0].rgb = clamp(FinalColor / gl_FragData[0].a*alpha0*(1.0-fresnel) * 0.1 + Reflections_Final / gl_FragData[0].a * 0.1,0.0,65100.0);
|
||||
|
||||
if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.0);
|
||||
|
||||
} else {
|
||||
gl_FragData[0].rgb = FinalColor*0.1;
|
||||
}
|
||||
|
||||
#else
|
||||
gl_FragData[0].rgb = FinalColor*0.1;
|
||||
#endif
|
||||
|
||||
#if EMISSIVE_TYPE == 2 || EMISSIVE_TYPE == 3
|
||||
Emission(gl_FragData[0].rgb, Albedo, SpecularTex.b, exposure);
|
||||
#endif
|
||||
|
||||
#if defined DISTANT_HORIZONS && defined DH_OVERDRAW_PREVENTION && !defined HAND
|
||||
bool WATER = texture2D(colortex7, gl_FragCoord.xy*texelSize).a > 0.0 && length(feetPlayerPos) > far-16*4 && texture2D(depthtex1, gl_FragCoord.xy*texelSize).x >= 1.0;
|
||||
|
||||
if(WATER) gl_FragData[0].a = 0.0;
|
||||
#endif
|
||||
|
||||
#ifndef HAND
|
||||
gl_FragData[1] = vec4(Albedo, MATERIALS);
|
||||
#endif
|
||||
#if DEBUG_VIEW == debug_DH_WATER_BLENDING
|
||||
if(gl_FragCoord.x*texelSize.x < 0.47) gl_FragData[0] = vec4(0.0);
|
||||
#endif
|
||||
#if DEBUG_VIEW == debug_NORMALS
|
||||
gl_FragData[0].rgb = normalize(normal.xyz) * 0.1;
|
||||
#endif
|
||||
#if DEBUG_VIEW == debug_INDIRECT
|
||||
gl_FragData[0].rgb = Indirect_lighting* 0.1;
|
||||
#endif
|
||||
#if DEBUG_VIEW == debug_DIRECT
|
||||
gl_FragData[0].rgb = Direct_lighting * 0.1;
|
||||
#endif
|
||||
|
||||
gl_FragData[3].a = clamp(lightmap.y,0.0,1.0);
|
||||
|
||||
}
|
||||
}
|
232
shaders/dimensions/physics_ocean.vsh
Normal file
232
shaders/dimensions/physics_ocean.vsh
Normal file
@ -0,0 +1,232 @@
|
||||
#include "/lib/settings.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
#include "/lib/bokeh.glsl"
|
||||
#include "/lib/items.glsl"
|
||||
#include "/lib/physics_ocean.glsl"
|
||||
|
||||
uniform float frameTimeCounter;
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
|
||||
/*
|
||||
!! DO NOT REMOVE !!
|
||||
This code is from Chocapic13' shaders
|
||||
Read the terms of modification and sharing before changing something below please !
|
||||
!! DO NOT REMOVE !!
|
||||
*/
|
||||
|
||||
varying vec3 physics_localPosition;
|
||||
varying float physics_localWaviness;
|
||||
|
||||
varying vec4 lmtexcoord;
|
||||
varying vec4 color;
|
||||
|
||||
uniform sampler2D colortex4;
|
||||
uniform sampler2D noisetex;
|
||||
flat varying float exposure;
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 WsunVec;
|
||||
|
||||
#if defined Daily_Weather
|
||||
flat varying vec4 dailyWeatherParams0;
|
||||
flat varying vec4 dailyWeatherParams1;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
varying vec4 normalMat;
|
||||
varying vec3 binormal;
|
||||
varying vec4 tangent;
|
||||
varying vec3 flatnormal;
|
||||
|
||||
varying vec3 shitnormal;
|
||||
|
||||
uniform mat4 gbufferModelViewInverse;
|
||||
uniform mat4 gbufferModelView;
|
||||
varying vec3 viewVector;
|
||||
|
||||
flat varying int glass;
|
||||
|
||||
attribute vec4 at_tangent;
|
||||
attribute vec4 mc_Entity;
|
||||
|
||||
|
||||
uniform vec3 sunPosition;
|
||||
uniform vec3 cameraPosition;
|
||||
uniform float sunElevation;
|
||||
|
||||
varying vec4 tangent_other;
|
||||
|
||||
uniform int frameCounter;
|
||||
// uniform float far;
|
||||
uniform float aspectRatio;
|
||||
uniform float viewHeight;
|
||||
uniform float viewWidth;
|
||||
uniform int hideGUI;
|
||||
uniform float screenBrightness;
|
||||
|
||||
uniform int heldItemId;
|
||||
uniform int heldItemId2;
|
||||
flat varying float HELD_ITEM_BRIGHTNESS;
|
||||
|
||||
uniform vec2 texelSize;
|
||||
uniform int framemod8;
|
||||
|
||||
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
||||
vec2(-1.,3.)/8.,
|
||||
vec2(5.0,1.)/8.,
|
||||
vec2(-3,-5.)/8.,
|
||||
vec2(-5.,5.)/8.,
|
||||
vec2(-7.,-1.)/8.,
|
||||
vec2(3,7.)/8.,
|
||||
vec2(7.,-7.)/8.);
|
||||
|
||||
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
||||
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
||||
|
||||
vec4 toClipSpace3(vec3 viewSpacePosition) {
|
||||
return vec4(projMAD(gl_ProjectionMatrix, viewSpacePosition),-viewSpacePosition.z);
|
||||
}
|
||||
|
||||
|
||||
// float getWave (vec3 pos, float range){
|
||||
// return pow(1.0-texture2D(noisetex, (pos.xz + frameTimeCounter * WATER_WAVE_SPEED)/150.0).b,2) * WATER_WAVE_STRENGTH / range;
|
||||
// }
|
||||
// vec3 getWaveNormal(vec3 posxz, float range){
|
||||
|
||||
// float deltaPos = 0.5;
|
||||
|
||||
// vec3 coord = posxz;
|
||||
|
||||
// float h0 = getWave(coord,range);
|
||||
// float h1 = getWave(coord - vec3(deltaPos,0.0,0.0),range);
|
||||
// float h3 = getWave(coord - vec3(0.0,0.0,deltaPos),range);
|
||||
|
||||
|
||||
// float xDelta = (h1-h0)/deltaPos*1.5;
|
||||
// float yDelta = (h3-h0)/deltaPos*1.5;
|
||||
|
||||
// vec3 wave = normalize(vec3(xDelta, yDelta, 1.0-pow(abs(xDelta+yDelta),2.0)));
|
||||
|
||||
// return wave;
|
||||
// }
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
|
||||
void main() {
|
||||
|
||||
// lmtexcoord.xy = (gl_MultiTexCoord0).xy;
|
||||
lmtexcoord.xy = (gl_TextureMatrix[0] * gl_MultiTexCoord0).xy;
|
||||
vec2 lmcoord = gl_MultiTexCoord1.xy / 240.0;
|
||||
lmtexcoord.zw = lmcoord;
|
||||
|
||||
vec3 position = mat3(gl_ModelViewMatrix) * vec3(gl_Vertex) + gl_ModelViewMatrix[3].xyz;
|
||||
|
||||
physics_localWaviness = texelFetch(physics_waviness, ivec2(gl_Vertex.xz) - physics_textureOffset, 0).r;
|
||||
float waveOffsetY = physics_waveHeight(gl_Vertex.xz, PHYSICS_ITERATIONS_OFFSET, physics_localWaviness, physics_gameTime);
|
||||
physics_localPosition = gl_Vertex.xyz;// + vec3(0.0, waveOffsetY, 0.0);
|
||||
|
||||
vec3 displacedPos = mat3(gbufferModelViewInverse) * position + gbufferModelViewInverse[3].xyz;
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float range = min(1.0 + pow(length(displacedPos) / min(far,256.0),2.0), 256.0);
|
||||
#else
|
||||
float range = min(1.0 + pow(length(displacedPos) / 256,2.0), 256.0);
|
||||
#endif
|
||||
|
||||
|
||||
displacedPos.y += smoothstep(256.0, 200.0, range) * waveOffsetY;
|
||||
//shitnormal = getWaveNormal(displacedPos, range);
|
||||
shitnormal = vec3(0.0, 0.0, 1.0);
|
||||
|
||||
position = mat3(gbufferModelView) * displacedPos + gbufferModelView[3].xyz;
|
||||
|
||||
gl_Position = toClipSpace3(position);
|
||||
|
||||
HELD_ITEM_BRIGHTNESS = 0.0;
|
||||
|
||||
#ifdef Hand_Held_lights
|
||||
if(heldItemId > 999 || heldItemId2 > 999) HELD_ITEM_BRIGHTNESS = 0.9;
|
||||
#endif
|
||||
|
||||
// 1.0 = water mask
|
||||
float mat = 1.0;
|
||||
|
||||
gl_Position.z -= 1e-4;
|
||||
|
||||
// translucent entities
|
||||
// #if defined ENTITIES || defined BLOCKENTITIES
|
||||
// mat = 0.9;
|
||||
// if (entityId == 1803) mat = 0.8;
|
||||
// #endif
|
||||
|
||||
// translucent blocks
|
||||
// if (mc_Entity.x >= 301 && mc_Entity.x <= 321) mat = 0.7;
|
||||
|
||||
tangent = vec4(normalize(gl_NormalMatrix *at_tangent.rgb),at_tangent.w);
|
||||
|
||||
normalMat = vec4(normalize(gl_NormalMatrix * gl_Normal), 1.0);
|
||||
normalMat.a = mat;
|
||||
|
||||
vec3 tangent2 = normalize( gl_NormalMatrix *at_tangent.rgb);
|
||||
binormal = normalize(cross(tangent2.rgb,normalMat.xyz)*at_tangent.w);
|
||||
|
||||
mat3 tbnMatrix = mat3(tangent2.x, binormal.x, normalMat.x,
|
||||
tangent2.y, binormal.y, normalMat.y,
|
||||
tangent2.z, binormal.z, normalMat.z);
|
||||
|
||||
flatnormal = normalMat.xyz;
|
||||
|
||||
viewVector = position.xyz;
|
||||
// viewVector = (gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
viewVector = normalize(tbnMatrix * viewVector);
|
||||
|
||||
|
||||
color = vec4(gl_Color.rgb, 1.0);
|
||||
exposure = texelFetch2D(colortex4,ivec2(10,37),0).r;
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
lightCol.rgb = texelFetch2D(colortex4,ivec2(6,37),0).rgb;
|
||||
lightCol.a = float(sunElevation > 1e-5)*2.0 - 1.0;
|
||||
|
||||
averageSkyCol_Clouds = texelFetch2D(colortex4,ivec2(0,37),0).rgb;
|
||||
|
||||
WsunVec = lightCol.a * normalize(mat3(gbufferModelViewInverse) * sunPosition);
|
||||
// WsunVec = normalize(LightDir);
|
||||
|
||||
#if defined Daily_Weather
|
||||
dailyWeatherParams0 = vec4((texelFetch2D(colortex4,ivec2(1,1),0).rgb/150.0)/2.0, 0.0);
|
||||
dailyWeatherParams1 = vec4((texelFetch2D(colortex4,ivec2(2,1),0).rgb/150.0)/2.0, 0.0);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef TAA_UPSCALING
|
||||
gl_Position.xy = gl_Position.xy * RENDER_SCALE + RENDER_SCALE * gl_Position.w - gl_Position.w;
|
||||
#endif
|
||||
#ifdef TAA
|
||||
gl_Position.xy += offsets[framemod8] * gl_Position.w*texelSize;
|
||||
#endif
|
||||
|
||||
#if DOF_QUALITY == 5
|
||||
vec2 jitter = clamp(jitter_offsets[frameCounter % 64], -1.0, 1.0);
|
||||
jitter = rotate(radians(float(frameCounter))) * jitter;
|
||||
jitter.y *= aspectRatio;
|
||||
jitter.x *= DOF_ANAMORPHIC_RATIO;
|
||||
|
||||
#if MANUAL_FOCUS == -2
|
||||
float focusMul = 0;
|
||||
#elif MANUAL_FOCUS == -1
|
||||
float focusMul = gl_Position.z - mix(pow(512.0, screenBrightness), 512.0 * screenBrightness, 0.25);
|
||||
#else
|
||||
float focusMul = gl_Position.z - MANUAL_FOCUS;
|
||||
#endif
|
||||
|
||||
vec2 totalOffset = (jitter * JITTER_STRENGTH) * focusMul * 1e-2;
|
||||
gl_Position.xy += hideGUI >= 1 ? totalOffset : vec2(0);
|
||||
#endif
|
||||
}
|
163
shaders/lib/physics_ocean.glsl
Normal file
163
shaders/lib/physics_ocean.glsl
Normal file
@ -0,0 +1,163 @@
|
||||
const int PHYSICS_ITERATIONS_OFFSET = 13;
|
||||
const float PHYSICS_DRAG_MULT = 0.048;
|
||||
const float PHYSICS_XZ_SCALE = 0.035;
|
||||
const float PHYSICS_TIME_MULTIPLICATOR = 0.45;
|
||||
const float PHYSICS_W_DETAIL = 0.75;
|
||||
const float PHYSICS_FREQUENCY = 6.0;
|
||||
const float PHYSICS_SPEED = 2.0;
|
||||
const float PHYSICS_WEIGHT = 0.8;
|
||||
const float PHYSICS_FREQUENCY_MULT = 1.18;
|
||||
const float PHYSICS_SPEED_MULT = 1.07;
|
||||
const float PHYSICS_ITER_INC = 12.0;
|
||||
const float PHYSICS_NORMAL_STRENGTH = 1.0;
|
||||
|
||||
// this is the surface detail from the physics options, ranges from 13 to 48 (yeah I know weird)
|
||||
uniform int physics_iterationsNormal;
|
||||
// used to offset the 0 point of wave meshes to keep the wave function consistent even
|
||||
// though the mesh totally changes
|
||||
uniform vec2 physics_waveOffset;
|
||||
// used for offsetting the local position to fetch the right pixel of the waviness texture
|
||||
uniform ivec2 physics_textureOffset;
|
||||
// time in seconds that can go faster dependent on weather conditions (affected by weather strength
|
||||
// multiplier in ocean settings
|
||||
uniform float physics_gameTime;
|
||||
// base value is 13 and gets multiplied by wave height in ocean settings
|
||||
uniform float physics_oceanHeight;
|
||||
// basic texture to determine how shallow/far away from the shore the water is
|
||||
uniform sampler2D physics_waviness;
|
||||
// basic scale for the horizontal size of the waves
|
||||
uniform float physics_oceanWaveHorizontalScale;
|
||||
// used to offset the model to know the ripple position
|
||||
uniform vec3 physics_modelOffset;
|
||||
// used for offsetting the ripple texture
|
||||
uniform float physics_rippleRange;
|
||||
// controlling how much foam generates on the ocean
|
||||
uniform float physics_foamAmount;
|
||||
// controlling the opacity of the foam
|
||||
uniform float physics_foamOpacity;
|
||||
// texture containing the ripples (basic bump map)
|
||||
uniform sampler2D physics_ripples;
|
||||
// foam noise
|
||||
uniform sampler3D physics_foam;
|
||||
|
||||
// ERROR: MISSING!
|
||||
const float physics_globalTime = 0.0;
|
||||
|
||||
|
||||
float physics_waveHeight(vec2 position, int iterations, float factor, float time) {
|
||||
position = (position - physics_waveOffset) * PHYSICS_XZ_SCALE * physics_oceanWaveHorizontalScale;
|
||||
float iter = 0.0;
|
||||
float frequency = PHYSICS_FREQUENCY;
|
||||
float speed = PHYSICS_SPEED;
|
||||
float weight = 1.0;
|
||||
float height = 0.0;
|
||||
float waveSum = 0.0;
|
||||
float modifiedTime = time * PHYSICS_TIME_MULTIPLICATOR;
|
||||
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
vec2 direction = vec2(sin(iter), cos(iter));
|
||||
float x = dot(direction, position) * frequency + modifiedTime * speed;
|
||||
float wave = exp(sin(x) - 1.0);
|
||||
float result = wave * cos(x);
|
||||
vec2 force = result * weight * direction;
|
||||
|
||||
position -= force * PHYSICS_DRAG_MULT;
|
||||
height += wave * weight;
|
||||
iter += PHYSICS_ITER_INC;
|
||||
waveSum += weight;
|
||||
weight *= PHYSICS_WEIGHT;
|
||||
frequency *= PHYSICS_FREQUENCY_MULT;
|
||||
speed *= PHYSICS_SPEED_MULT;
|
||||
}
|
||||
|
||||
return height / waveSum * physics_oceanHeight * factor - physics_oceanHeight * factor * 0.5;
|
||||
}
|
||||
|
||||
vec3 physics_waveNormal(const in vec2 position, const in vec2 direction, const in float factor, const in float time) {
|
||||
float oceanHeightFactor = physics_oceanHeight / 13.0;
|
||||
float totalFactor = oceanHeightFactor * factor;
|
||||
vec3 waveNormal = normalize(vec3(direction * totalFactor, PHYSICS_NORMAL_STRENGTH));
|
||||
|
||||
vec2 eyePosition = position + physics_modelOffset.xz;
|
||||
vec2 rippleFetch = (eyePosition + vec2(physics_rippleRange)) / (physics_rippleRange * 2.0);
|
||||
vec2 rippleTexelSize = vec2(2.0 / textureSize(physics_ripples, 0).x, 0.0);
|
||||
float left = texture(physics_ripples, rippleFetch - rippleTexelSize.xy).r;
|
||||
float right = texture(physics_ripples, rippleFetch + rippleTexelSize.xy).r;
|
||||
float top = texture(physics_ripples, rippleFetch - rippleTexelSize.yx).r;
|
||||
float bottom = texture(physics_ripples, rippleFetch + rippleTexelSize.yx).r;
|
||||
float totalEffect = left + right + top + bottom;
|
||||
|
||||
vec3 rippleNormal = normalize(vec3(left - right, top - bottom, 1.0));
|
||||
return normalize(mix(waveNormal, rippleNormal, sqrt(totalEffect)));
|
||||
}
|
||||
|
||||
#ifdef RENDER_FRAGMENT
|
||||
struct WavePixelData {
|
||||
vec2 direction;
|
||||
vec2 worldPos;
|
||||
vec3 normal;
|
||||
float foam;
|
||||
float height;
|
||||
};
|
||||
|
||||
WavePixelData physics_wavePixel(vec2 position, const in float factor, const in float iterations, const in float time) {
|
||||
#if WATER_SURFACE_PIXEL_RES > 0
|
||||
position = floor(position * WATER_SURFACE_PIXEL_RES) / WATER_SURFACE_PIXEL_RES;
|
||||
#endif
|
||||
|
||||
vec2 wavePos = (position.xy - physics_waveOffset) * PHYSICS_XZ_SCALE * physics_oceanWaveHorizontalScale;
|
||||
float iter = 0.0;
|
||||
float frequency = PHYSICS_FREQUENCY;
|
||||
float speed = PHYSICS_SPEED;
|
||||
float weight = 1.0;
|
||||
float height = 0.0;
|
||||
float waveSum = 0.0;
|
||||
float modifiedTime = time * PHYSICS_TIME_MULTIPLICATOR;
|
||||
vec2 dx = vec2(0.0);
|
||||
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
vec2 direction = vec2(sin(iter), cos(iter));
|
||||
float x = dot(direction, wavePos) * frequency + modifiedTime * speed;
|
||||
float wave = exp(sin(x) - 1.0);
|
||||
float result = wave * cos(x);
|
||||
vec2 force = result * weight * direction;
|
||||
|
||||
dx += force / pow(weight, PHYSICS_W_DETAIL);
|
||||
wavePos -= force * PHYSICS_DRAG_MULT;
|
||||
height += wave * weight;
|
||||
iter += PHYSICS_ITER_INC;
|
||||
waveSum += weight;
|
||||
weight *= PHYSICS_WEIGHT;
|
||||
frequency *= PHYSICS_FREQUENCY_MULT;
|
||||
speed *= PHYSICS_SPEED_MULT;
|
||||
}
|
||||
|
||||
WavePixelData data;
|
||||
data.direction = -vec2(dx / pow(waveSum, 1.0 - PHYSICS_W_DETAIL));
|
||||
data.worldPos = wavePos / physics_oceanWaveHorizontalScale / PHYSICS_XZ_SCALE;
|
||||
data.height = height / waveSum * physics_oceanHeight * factor - physics_oceanHeight * factor * 0.5;
|
||||
|
||||
data.normal = physics_waveNormal(position, data.direction, factor, time);
|
||||
|
||||
float waveAmplitude = max(data.normal.z, 0.0);
|
||||
waveAmplitude = data.height * pow(waveAmplitude, 4);
|
||||
vec2 waterUV = mix(position - physics_waveOffset, data.worldPos, clamp(factor * 2.0, 0.2, 1.0));
|
||||
|
||||
vec2 s1 = textureLod(physics_foam, vec3(waterUV * 0.26, physics_globalTime / 360.0), 0).rg;
|
||||
vec2 s2 = textureLod(physics_foam, vec3(waterUV * 0.02, physics_globalTime / 360.0 + 0.5), 0).rg;
|
||||
vec2 s3 = textureLod(physics_foam, vec3(waterUV * 0.1, physics_globalTime / 360.0 + 1.0), 0).rg;
|
||||
|
||||
float waterSurfaceNoise = s1.r * s2.r * s3.r * 2.8 * physics_foamAmount;
|
||||
waveAmplitude = saturate(waveAmplitude * 1.2);
|
||||
waterSurfaceNoise = (1.0 - waveAmplitude) * waterSurfaceNoise + waveAmplitude * physics_foamAmount;
|
||||
|
||||
float worleyNoise = 0.2 + 0.8 * s1.g * (1.0 - s2.g);
|
||||
float waterFoamMinSmooth = 0.45;
|
||||
float waterFoamMaxSmooth = 2.0;
|
||||
waterSurfaceNoise = smoothstep(waterFoamMinSmooth, 1.0, waterSurfaceNoise) * worleyNoise;
|
||||
|
||||
data.foam = saturate(waterFoamMaxSmooth * waterSurfaceNoise * physics_foamOpacity);
|
||||
|
||||
return data;
|
||||
}
|
||||
#endif
|
5
shaders/world0/physics_ocean.fsh
Normal file
5
shaders/world0/physics_ocean.fsh
Normal file
@ -0,0 +1,5 @@
|
||||
#version 120
|
||||
|
||||
#define OVERWORLD_SHADER
|
||||
|
||||
#include "/dimensions/physics_ocean.fsh"
|
5
shaders/world0/physics_ocean.vsh
Normal file
5
shaders/world0/physics_ocean.vsh
Normal file
@ -0,0 +1,5 @@
|
||||
#version 120
|
||||
|
||||
#define OVERWORLD_SHADER
|
||||
|
||||
#include "/dimensions/physics_ocean.vsh"
|
Loading…
x
Reference in New Issue
Block a user