mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2024-12-22 17:47:34 +08:00
add max distance for biome effects. make border fog cylindrical. Fix compile error on optifine.
This commit is contained in:
parent
69dae189b1
commit
b91c1f796f
@ -75,6 +75,22 @@ float R2_dither(){
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
|
||||
//3D noise from 2d texture
|
||||
float densityAtPos(in vec3 pos){
|
||||
pos /= 18.;
|
||||
pos.xz *= 0.5;
|
||||
vec3 p = floor(pos);
|
||||
vec3 f = fract(pos);
|
||||
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
||||
vec2 coord = uv / 512.0;
|
||||
|
||||
//The y channel has an offset to avoid using two textures fetches
|
||||
vec2 xy = texture2D(noisetex, coord).yx;
|
||||
|
||||
return mix(xy.r,xy.g, f.y);
|
||||
}
|
||||
uniform vec3 cameraPosition;
|
||||
|
||||
/* RENDERTARGETS:1,7,8 */
|
||||
void main() {
|
||||
// overdraw prevention
|
||||
@ -90,7 +106,16 @@ void main() {
|
||||
|
||||
// alpha is material masks, set it to 0.65 to make a DH LODs mask.
|
||||
vec4 Albedo = vec4(gcolor.rgb, 1.0);
|
||||
|
||||
|
||||
// vec3 worldPos = mat3(gbufferModelViewInverse)*pos.xyz + cameraPosition;
|
||||
// worldPos = (worldPos*vec3(1.0,1./48.,1.0)/4) ;
|
||||
// worldPos = floor(worldPos * 4.0 + 0.001) / 32.0;
|
||||
// float noiseTexture = densityAtPos(worldPos* 5000 ) +0.5;
|
||||
|
||||
// float noiseFactor = max(1.0 - 0.3 * dot(Albedo.rgb, Albedo.rgb),0.0);
|
||||
// Albedo.rgb *= pow(noiseTexture, 0.6 * noiseFactor);
|
||||
// Albedo.rgb *= (noiseTexture*noiseTexture)*0.5 + 0.5;
|
||||
|
||||
#ifdef WhiteWorld
|
||||
Albedo.rgb = vec3(0.5);
|
||||
#endif
|
||||
|
@ -754,12 +754,18 @@ void main() {
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
DirectLightColor = lightCol.rgb/80.0;
|
||||
AmbientLightColor = averageSkyCol_Clouds;
|
||||
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
BiomeSunlightColor(DirectLightColor);
|
||||
// BiomeSunlightColor(DirectLightColor);
|
||||
vec3 biomeDirect = DirectLightColor;
|
||||
vec3 biomeIndirect = AmbientLightColor;
|
||||
float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect);
|
||||
|
||||
float maxDistance = inBiome * min(max(1.0 - length(feetPlayerPos)/(32*8),0.0)*2.0,1.0);
|
||||
DirectLightColor = mix(DirectLightColor, biomeDirect, maxDistance);
|
||||
#endif
|
||||
|
||||
AmbientLightColor = averageSkyCol_Clouds;
|
||||
|
||||
|
||||
vec3 filteredShadow = vec3(1.412,1.0,0.0);
|
||||
if (!hand) filteredShadow = texture2D(colortex3,texcoord).rgb;
|
||||
@ -845,7 +851,7 @@ void main() {
|
||||
|
||||
|
||||
vec3 shadowPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
|
||||
|
||||
|
||||
if(!hand || !entities) GriAndEminShadowFix(shadowPlayerPos, viewToWorld(FlatNormals), vanilla_AO, lightmap.y, entities);
|
||||
|
||||
vec3 projectedShadowPosition = mat3(shadowModelView) * shadowPlayerPos + shadowModelView[3].xyz;
|
||||
|
@ -248,6 +248,7 @@ void main() {
|
||||
vec3 np3 = normVec(p3);
|
||||
|
||||
float linearDistance = length(p3);
|
||||
float linearDistance_cylinder = length(p3.xz);
|
||||
|
||||
float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
|
||||
float lightleakfixfast = clamp(eyeBrightness.y/240.,0.0,1.0);
|
||||
@ -292,9 +293,9 @@ void main() {
|
||||
#if defined BorderFog
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float fog = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - linearDistance / dhFarPlane,0.0)*3.0,1.0),2.0),2.0);
|
||||
float fog = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - linearDistance_cylinder / dhFarPlane,0.0)*3.0,1.0),2.0),2.0);
|
||||
#else
|
||||
float fog = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - linearDistance / far,0.0)*5.0,1.0),2.0),2.0);
|
||||
float fog = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - linearDistance_cylinder / far,0.0)*5.0,1.0),2.0),2.0);
|
||||
#endif
|
||||
|
||||
fog *= exp(-10.0 * pow(clamp(np3.y,0.0,1.0)*4.0,2.0));
|
||||
|
@ -229,6 +229,7 @@ vec3 closestToCamera5taps_DH(vec2 texcoord, sampler2D depth, sampler2D dhDepth,
|
||||
|
||||
|
||||
uniform sampler2D dhDepthTex;
|
||||
uniform float far;
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
|
||||
@ -250,9 +251,12 @@ float invertlinearDepthFast(const in float depth, const in float near, const in
|
||||
|
||||
vec3 toClipSpace3Prev_DH( vec3 viewSpacePosition, bool depthCheck ) {
|
||||
|
||||
mat4 projectionMatrix = depthCheck ? dhPreviousProjection : gbufferPreviousProjection;
|
||||
|
||||
return projMAD(projectionMatrix, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
#ifdef DISTANT_HORIZONS
|
||||
mat4 projectionMatrix = depthCheck ? dhPreviousProjection : gbufferPreviousProjection;
|
||||
return projMAD(projectionMatrix, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
#else
|
||||
return projMAD(gbufferPreviousProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
#endif
|
||||
}
|
||||
|
||||
vec3 toScreenSpace_DH_special(vec3 POS, bool depthCheck ) {
|
||||
@ -309,7 +313,7 @@ vec4 TAA_hq(){
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec3 closestToCamera = closestToCamera5taps_DH(adjTC, depthtex0, dhDepthTex, depthCheck);
|
||||
#else
|
||||
vec3 closestToCamera = closestToCamera5taps(adjTC, depthtex0);
|
||||
vec3 closestToCamera = closestToCamera5taps(adjTC,depthtex0);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
@ -77,8 +77,8 @@ float blueNoise(){
|
||||
}
|
||||
|
||||
#define DHVLFOG
|
||||
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
||||
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
||||
// #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
||||
// #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
||||
|
||||
vec3 toScreenSpace(vec3 p) {
|
||||
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
|
||||
|
@ -43,6 +43,7 @@ vec3 toScreenSpace(vec3 p) {
|
||||
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
|
||||
return fragposition.xyz / fragposition.w;
|
||||
}
|
||||
|
||||
float R2_dither(){
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
@ -76,32 +77,6 @@ vec3 normVec (vec3 vec){
|
||||
return vec*inversesqrt(dot(vec,vec));
|
||||
}
|
||||
|
||||
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
||||
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
||||
uniform mat4 dhPreviousProjection;
|
||||
uniform mat4 dhProjectionInverse;
|
||||
uniform mat4 dhProjection;
|
||||
|
||||
vec3 DH_toScreenSpace(vec3 p) {
|
||||
vec4 iProjDiag = vec4(dhProjectionInverse[0].x, dhProjectionInverse[1].y, dhProjectionInverse[2].zw);
|
||||
vec3 feetPlayerPos = p * 2. - 1.;
|
||||
vec4 viewPos = iProjDiag * feetPlayerPos.xyzz + dhProjectionInverse[3];
|
||||
return viewPos.xyz / viewPos.w;
|
||||
}
|
||||
|
||||
vec3 DH_toClipSpace3(vec3 viewSpacePosition) {
|
||||
return projMAD(dhProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
}
|
||||
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
float DH_ld(float dist) {
|
||||
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
|
||||
}
|
||||
float DH_inv_ld (float lindepth){
|
||||
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
|
||||
}
|
||||
|
||||
#include "/lib/lightning_stuff.glsl"
|
||||
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
|
@ -33,9 +33,13 @@ vec3 toScreenSpace_DH( vec2 texcoord, float depth, float DHdepth ) {
|
||||
}
|
||||
vec3 toClipSpace3_DH( vec3 viewSpacePosition, bool depthCheck ) {
|
||||
|
||||
mat4 projectionMatrix = depthCheck ? dhProjection : gbufferProjection;
|
||||
#ifdef DISTANT_HORIZONS
|
||||
mat4 projectionMatrix = depthCheck ? dhProjection : gbufferProjection;
|
||||
return projMAD(projectionMatrix, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
#else
|
||||
return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
#endif
|
||||
|
||||
return projMAD(projectionMatrix, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
}
|
||||
|
||||
mat4 DH_shadowProjectionTweak( in mat4 projection){
|
||||
|
@ -175,25 +175,26 @@
|
||||
FinalFogColor = mix(FinalFogColor, BiomeColors, Inbiome);
|
||||
}
|
||||
|
||||
void BiomeSunlightColor(
|
||||
inout vec3 FinalSunlightColor
|
||||
){
|
||||
// this is a little complicated? lmao
|
||||
vec3 BiomeColors = vec3(0.0);
|
||||
BiomeColors.r = isSwamps*SWAMP_R + isJungles*JUNGLE_R + isDarkForests*DARKFOREST_R + sandStorm*1.0 + snowStorm*0.6;
|
||||
BiomeColors.g = isSwamps*SWAMP_G + isJungles*JUNGLE_G + isDarkForests*DARKFOREST_G + sandStorm*0.5 + snowStorm*0.8;
|
||||
BiomeColors.b = isSwamps*SWAMP_B + isJungles*JUNGLE_B + isDarkForests*DARKFOREST_B + sandStorm*0.3 + snowStorm*1.0;
|
||||
// void BiomeSunlightColor(
|
||||
// inout vec3 FinalSunlightColor
|
||||
// ){
|
||||
// // this is a little complicated? lmao
|
||||
// vec3 BiomeColors = vec3(0.0);
|
||||
// BiomeColors.r = isSwamps*SWAMP_R + isJungles*JUNGLE_R + isDarkForests*DARKFOREST_R + sandStorm*1.0 + snowStorm*0.6;
|
||||
// BiomeColors.g = isSwamps*SWAMP_G + isJungles*JUNGLE_G + isDarkForests*DARKFOREST_G + sandStorm*0.5 + snowStorm*0.8;
|
||||
// BiomeColors.b = isSwamps*SWAMP_B + isJungles*JUNGLE_B + isDarkForests*DARKFOREST_B + sandStorm*0.3 + snowStorm*1.0;
|
||||
|
||||
// these range 0.0-1.0. they will never overlap.
|
||||
float Inbiome = isJungles+isSwamps+isDarkForests+sandStorm+snowStorm;
|
||||
// // these range 0.0-1.0. they will never overlap.
|
||||
// float Inbiome = isJungles+isSwamps+isDarkForests+sandStorm+snowStorm;
|
||||
|
||||
// interpoloate between normal fog colors and biome colors. the transition speeds are conrolled by the biome uniforms.
|
||||
FinalSunlightColor = mix(FinalSunlightColor, FinalSunlightColor * (BiomeColors*0.8+0.2), Inbiome);
|
||||
}
|
||||
// // interpoloate between normal fog colors and biome colors. the transition speeds are conrolled by the biome uniforms.
|
||||
// FinalSunlightColor = mix(FinalSunlightColor, FinalSunlightColor * (BiomeColors*0.8+0.2), Inbiome);
|
||||
// }
|
||||
|
||||
void BiomeFogDensity(
|
||||
inout vec4 UniformDensity,
|
||||
inout vec4 CloudyDensity
|
||||
inout vec4 CloudyDensity,
|
||||
float maxDistance
|
||||
){
|
||||
// these range 0.0-1.0. they will never overlap.
|
||||
float Inbiome = isJungles+isSwamps+isDarkForests+sandStorm+snowStorm;
|
||||
@ -202,9 +203,29 @@
|
||||
BiomeFogDensity.x = isSwamps*SWAMP_UNIFORM_DENSITY + isJungles*JUNGLE_UNIFORM_DENSITY + isDarkForests*DARKFOREST_UNIFORM_DENSITY + sandStorm*15 + snowStorm*150;
|
||||
BiomeFogDensity.y = isSwamps*SWAMP_CLOUDY_DENSITY + isJungles*JUNGLE_CLOUDY_DENSITY + isDarkForests*DARKFOREST_CLOUDY_DENSITY + sandStorm*255 + snowStorm*255;
|
||||
|
||||
UniformDensity = mix(UniformDensity, vec4(BiomeFogDensity.x), Inbiome);
|
||||
CloudyDensity = mix(CloudyDensity, vec4(BiomeFogDensity.y), Inbiome);
|
||||
UniformDensity = mix(UniformDensity, vec4(BiomeFogDensity.x), Inbiome*maxDistance);
|
||||
CloudyDensity = mix(CloudyDensity, vec4(BiomeFogDensity.y), Inbiome*maxDistance);
|
||||
}
|
||||
|
||||
float BiomeVLFogColors(inout vec3 DirectLightCol, inout vec3 IndirectLightCol){
|
||||
|
||||
// this is a little complicated? lmao
|
||||
vec3 BiomeColors = vec3(0.0);
|
||||
BiomeColors.r = isSwamps*SWAMP_R + isJungles*JUNGLE_R + isDarkForests*DARKFOREST_R + sandStorm*1.0 + snowStorm*0.6;
|
||||
BiomeColors.g = isSwamps*SWAMP_G + isJungles*JUNGLE_G + isDarkForests*DARKFOREST_G + sandStorm*0.5 + snowStorm*0.8;
|
||||
BiomeColors.b = isSwamps*SWAMP_B + isJungles*JUNGLE_B + isDarkForests*DARKFOREST_B + sandStorm*0.3 + snowStorm*1.0;
|
||||
|
||||
// insure the biome colors are locked to the fog shape and lighting, but not its orignal color.
|
||||
DirectLightCol = BiomeColors * max(dot(DirectLightCol,vec3(0.33333)), MIN_LIGHT_AMOUNT*0.025 + nightVision*0.2);
|
||||
|
||||
IndirectLightCol = BiomeColors * max(dot(IndirectLightCol,vec3(0.33333)), MIN_LIGHT_AMOUNT*0.025 + nightVision*0.2);
|
||||
|
||||
// these range 0.0-1.0. they will never overlap.
|
||||
float Inbiome = isJungles+isSwamps+isDarkForests+sandStorm+snowStorm;
|
||||
|
||||
return Inbiome;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@ -213,7 +234,9 @@
|
||||
|
||||
#ifdef TIMEOFDAYFOG
|
||||
// uniform int worldTime;
|
||||
void TimeOfDayFog(inout float Uniform, inout float Cloudy) {
|
||||
void TimeOfDayFog(
|
||||
inout float Uniform, inout float Cloudy, float maxDistance
|
||||
) {
|
||||
|
||||
float Time = worldTime%24000;
|
||||
|
||||
@ -233,7 +256,7 @@
|
||||
#endif
|
||||
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
BiomeFogDensity(UniformDensity, CloudyDensity); // let biome fog hijack to control densities, and overrride any other density controller...
|
||||
BiomeFogDensity(UniformDensity, CloudyDensity, maxDistance); // let biome fog hijack to control densities, and overrride any other density controller...
|
||||
#endif
|
||||
|
||||
Uniform *= Morning*UniformDensity.r + Noon*UniformDensity.g + Evening*UniformDensity.b + Night*UniformDensity.a;
|
||||
|
@ -14,7 +14,7 @@ float densityAtPosFog(in vec3 pos){
|
||||
}
|
||||
|
||||
|
||||
float cloudVol(in vec3 pos){
|
||||
float cloudVol(in vec3 pos, float maxDistance ){
|
||||
|
||||
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
|
||||
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
||||
@ -40,7 +40,7 @@ float cloudVol(in vec3 pos){
|
||||
if(sandStorm > 0 || snowStorm > 0) CloudyFog = mix(CloudyFog, max(densityAtPosFog((samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*10) * 100.0 ) - 0.2,0.0) * heightlimit, sandStorm+snowStorm);
|
||||
#endif
|
||||
|
||||
TimeOfDayFog(UniformFog, CloudyFog);
|
||||
TimeOfDayFog(UniformFog, CloudyFog, maxDistance);
|
||||
|
||||
float noise = densityAtPosFog(samplePos * 12.0);
|
||||
float erosion = 1.0-densityAtPosFog(samplePos2 * (125 - (1-pow(1-noise,5))*25));
|
||||
@ -51,9 +51,9 @@ float cloudVol(in vec3 pos){
|
||||
// float testfogshapes = clumpyFog*30;
|
||||
// return testfogshapes;
|
||||
|
||||
// return max(exp( max(pos.y - 90,0.0) / -1), 0.0) * 100;
|
||||
return CloudyFog + UniformFog + RainFog;
|
||||
|
||||
// float groundFog = max(exp( max(pos.y - 90,0.0) / -1), 0.0) * 100;
|
||||
|
||||
}
|
||||
|
||||
@ -139,8 +139,9 @@ vec4 GetVolumetricFog(
|
||||
LightSourcePhased = vec3(0.0);
|
||||
#endif
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
BiomeFogColor(LightSourcePhased);
|
||||
BiomeFogColor(skyLightPhased);
|
||||
vec3 biomeDirect = LightSourcePhased;
|
||||
vec3 biomeIndirect = skyLightPhased;
|
||||
float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect);
|
||||
#endif
|
||||
|
||||
skyLightPhased = max(skyLightPhased + skyLightPhased*(normalize(wpos).y*0.9+0.1),0.0);
|
||||
@ -200,7 +201,13 @@ vec4 GetVolumetricFog(
|
||||
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
||||
#endif
|
||||
|
||||
float densityVol = cloudVol(progressW) * lightleakfix;
|
||||
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
float maxDistance = inBiome * min(max(1.0 - length(d*dVWorld.xz)/(32*8),0.0)*2.0,1.0);
|
||||
float densityVol = cloudVol(progressW, maxDistance) * lightleakfix;
|
||||
#else
|
||||
float densityVol = cloudVol(progressW, 0.0) * lightleakfix;
|
||||
#endif
|
||||
//Water droplets(fog)
|
||||
float density = densityVol*300.0;
|
||||
|
||||
@ -213,11 +220,18 @@ vec4 GetVolumetricFog(
|
||||
vec3 rL = rC*airCoef.x;
|
||||
vec3 m = (airCoef.y+density) * mC;
|
||||
|
||||
vec3 Atmosphere = skyLightPhased * (rL*RLmult + m); // not pbr so just make the atmosphere also dense fog heh
|
||||
vec3 DirectLight = LightSourcePhased * sh * ((rL*RLmult)*rayL + m);
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
vec3 Atmosphere = mix(skyLightPhased, biomeDirect, maxDistance) * (rL*RLmult + m); // not pbr so just make the atmosphere also dense fog heh
|
||||
vec3 DirectLight = mix(LightSourcePhased, biomeIndirect, maxDistance) * sh * ((rL*RLmult)*rayL + m);
|
||||
#else
|
||||
vec3 Atmosphere = skyLightPhased * (rL*RLmult + m); // not pbr so just make the atmosphere also dense fog heh
|
||||
vec3 DirectLight = LightSourcePhased * sh * ((rL*RLmult)*rayL + m);
|
||||
#endif
|
||||
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * (rL + m);
|
||||
|
||||
vec3 foglighting = (Atmosphere + DirectLight + Lightning) * lightleakfix;
|
||||
|
||||
|
||||
|
||||
color += (foglighting - foglighting * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
|
||||
absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0);
|
||||
|
Loading…
Reference in New Issue
Block a user