Bliss-Shader/shaders/world-1/lib/volumetricFog.glsl

119 lines
5.5 KiB
Plaintext
Raw Normal View History

2023-01-12 15:00:14 -05:00
#define VL_SAMPLES2 6 //[4 6 8 10 12 14 16 20 24 30 40 50]
#define Ambient_Mult 1.0 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.5 2.0 3.0 4.0 5.0 6.0 10.0]
#define SEA_LEVEL 70 //[0 10 20 30 40 50 60 70 80 90 100 110 120 130 150 170 190] //The volumetric light uses an altitude-based fog density, this is where fog density is the highest, adjust this value according to your world.
#define ATMOSPHERIC_DENSITY 1.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 7.5 10.0 12.5 15.0 20.]
#define fog_mieg1 0.40 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0]
#define fog_mieg2 0.10 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0]
#define fog_coefficientRayleighR 5.8 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
#define fog_coefficientRayleighG 1.35 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
#define fog_coefficientRayleighB 3.31 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
#define fog_coefficientMieR 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
#define fog_coefficientMieG 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
#define fog_coefficientMieB 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0]
#define Underwater_Fog_Density 1.0 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.5 2.0 3.0 4.0]
float phaseRayleigh(float cosTheta) {
const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0);
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
}
float cloudVol2(in vec3 pos){
vec3 samplePos = pos*vec3(1.0,1./16.,1.0)+frameTimeCounter*vec3(0.5,0.,0.5)*5.;
float coverage = mix(exp2(-(pos.y-SEA_LEVEL)*(pos.y-SEA_LEVEL)/10000.),1.0,rainStrength*0.5);
float noise = densityAtPos(samplePos*12.);
float unifCov = exp2(-max(pos.y-SEA_LEVEL,0.0)/50.);
float cloud = pow(clamp(coverage-noise-0.76,0.0,1.0),2.)*1200./0.23/(coverage+0.01)*VFAmount*600+unifCov*60.*fogAmount;
return cloud;
}
mat2x3 getVolumetricRays(float dither,vec3 fragpos) {
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.));
//rayvector into projected shadow map space
//we can use a projected vector because its orthographic projection
//however we still have to send it to curved shadow map space every step
vec3 dV = (fragposition-start);
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
float maxLength = min(length(dVWorld),256.0)/length(dVWorld);
dV *= maxLength;
dVWorld *= maxLength;
//apply dither
vec3 progress = start.xyz;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
vec3 vL = vec3(0.);
float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a;
float dL = length(dVWorld);
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
float mie = max(phaseg(SdotV,fog_mieg1),1.0/13.0);
float rayL = phaseRayleigh(SdotV);
// wpos.y = clamp(wpos.y,0.0,1.0);
vec3 ambientCoefs = dVWorld/dot(abs(dVWorld),vec3(1.));
vec3 ambientLight = ambientUp*clamp(ambientCoefs.y,0.,1.);
ambientLight += ambientDown*clamp(-ambientCoefs.y,0.,1.);
ambientLight += ambientRight*clamp(ambientCoefs.x,0.,1.);
ambientLight += ambientLeft*clamp(-ambientCoefs.x,0.,1.);
ambientLight += ambientB*clamp(ambientCoefs.z,0.,1.);
ambientLight += ambientF*clamp(-ambientCoefs.z,0.,1.);
vec3 skyCol0 = ambientLight*2.*eyeBrightnessSmooth.y/vec3(240.)*Ambient_Mult*2.0/PI;
vec3 sunColor = lightCol.rgb;
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
float mu = 1.0;
float muS = 1.0*mu;
vec3 absorbance = vec3(1.0);
float expFactor = 11.0;
for (int i=0;i<VL_SAMPLES2;i++) {
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES2))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES2)) * log(expFactor) / float(VL_SAMPLES2)/(expFactor-1.0);
progress = start.xyz + d*dV;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
//project into biased shadowmap space
float distortFactor = calcDistort(progress.xy);
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
float densityVol = cloudVol2(progressW);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D( shadow, pos).x;
}
//Water droplets(fog)
float density = densityVol*ATMOSPHERIC_DENSITY*mu*200.;
//Just air
vec2 airCoef = exp2(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0))*6.0;
//Pbr for air, yolo mix between mie and rayleigh for water droplets
vec3 rL = rC*(airCoef.x+density*0.15);
vec3 m = (airCoef.y+density*1.85)*mC;
vec3 vL0 = sunColor*sh*(rayL*rL+m*mie) + skyCol0*(rL+m);
vL += (vL0 - vL0 * exp(-dot(rL+m, vec3(0.22,0.71,0.07))*dd*dL)) / (dot(rL+m, vec3(0.22,0.71,0.07))+0.00000001)*absorbance;
absorbance *= clamp(exp(-dot(rL+m, vec3(0.22,0.71,0.07))*dd*dL),0.0,1.0);
}
return mat2x3(vL,absorbance);
}