Bliss-Shader/shaders/programs/all_translucent.fsh

579 lines
17 KiB
Plaintext
Raw Normal View History

// #version 120
#extension GL_EXT_gpu_shader4 : enable
varying vec4 lmtexcoord;
varying vec4 color;
varying vec4 normalMat;
varying vec3 binormal;
uniform sampler2D normals;
varying vec3 tangent;
varying vec4 tangent_other;
varying vec3 viewVector;
#include "/lib/settings.glsl"
#include "/lib/res_params.glsl"
uniform sampler2D texture;
uniform sampler2D noisetex;
uniform sampler2DShadow shadow;
// uniform sampler2D gaux2;
uniform sampler2D gaux1;
uniform sampler2D depthtex1;
uniform sampler2D colortex5;
uniform float nightVision;
uniform vec3 sunVec;
uniform float frameTimeCounter;
uniform float lightSign;
uniform float near;
uniform float far;
uniform float moonIntensity;
uniform float sunIntensity;
uniform vec3 sunColor;
uniform vec3 nsunColor;
uniform vec3 upVec;
uniform float sunElevation;
uniform float fogAmount;
uniform vec2 texelSize;
uniform float rainStrength;
uniform float skyIntensityNight;
uniform float skyIntensity;
flat varying vec3 WsunVec;
uniform mat4 gbufferPreviousModelView;
uniform vec3 previousCameraPosition;
uniform int framemod8;
uniform sampler2D specular;
uniform int frameCounter;
uniform int isEyeInWater;
flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon)
flat varying vec3 avgAmbient;
#include "/lib/color_transforms.glsl"
#include "/lib/projections.glsl"
#include "/lib/sky_gradient.glsl"
#include "/lib/waterBump.glsl"
2023-06-23 13:03:58 -04:00
#define END
#define NETHER
#include "/lib/diffuse_lighting.glsl"
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
vec2(-1.,3.)/8.,
vec2(5.0,1.)/8.,
vec2(-3,-5.)/8.,
vec2(-5.,5.)/8.,
vec2(-7.,-1.)/8.,
vec2(3,7.)/8.,
vec2(7.,-7.)/8.);
float interleaved_gradientNoise(float temporal){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+temporal);
return noise;
}
vec3 srgbToLinear2(vec3 srgb){
return mix(
srgb / 12.92,
pow(.947867 * srgb + .0521327, vec3(2.4) ),
step( .04045, srgb )
);
}
vec3 blackbody2(float Temp)
{
float t = pow(Temp, -1.5);
float lt = log(Temp);
vec3 col = vec3(0.0);
col.x = 220000.0 * t + 0.58039215686;
col.y = 0.39231372549 * lt - 2.44549019608;
col.y = Temp > 6500. ? 138039.215686 * t + 0.72156862745 : col.y;
col.z = 0.76078431372 * lt - 5.68078431373;
col = clamp(col,0.0,1.0);
col = Temp < 1000. ? col * Temp * 0.001 : col;
return srgbToLinear2(col);
}
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
float invLinZ (float lindepth){
return -((2.0*near/lindepth)-far-near)/(far-near);
}
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec3 nvec3(vec4 pos){
return pos.xyz/pos.w;
}
vec4 nvec4(vec3 pos){
return vec4(pos.xyz, 1.0);
}
vec3 rayTrace(vec3 dir,vec3 position,float dither, float fresnel, bool inwater){
float quality = mix(15,SSR_STEPS,fresnel);
vec3 clipPosition = toClipSpace3(position);
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
(-near -position.z) / dir.z : far*sqrt(3.);
vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
direction.xy = normalize(direction.xy);
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z);
vec3 stepv = direction * mult / quality;
vec3 spos = clipPosition + stepv*dither;
float minZ = clipPosition.z;
float maxZ = spos.z+stepv.z*0.5;
spos.xy += offsets[framemod8]*texelSize*0.5;
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
for (int i = 0; i <= int(quality); i++) {
// decode depth buffer
float sp = texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).x;
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ) ) return vec3(spos.xy,sp);
spos += stepv;
//small bias
float biasamount = 0.0002 / dist;
minZ = maxZ-biasamount / ld(spos.z);
maxZ += stepv.z;
}
return vec3(1.1);
}
float facos(float sx){
float x = clamp(abs( sx ),0.,1.);
float a = sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 );
return sx > 0. ? a : pi - a;
}
float bayer2(vec2 a){
a = floor(a);
return fract(dot(a,vec2(0.5,a.y*0.75)));
}
float cdist(vec2 coord) {
return max(abs(coord.s-0.5),abs(coord.t-0.5))*2.0;
}
#define PW_DEPTH 1.0 //[0.5 1.0 1.5 2.0 2.5 3.0]
#define PW_POINTS 1 //[2 4 6 8 16 32]
#define bayer4(a) (bayer2( .5*(a))*.25+bayer2(a))
#define bayer8(a) (bayer4( .5*(a))*.25+bayer2(a))
#define bayer16(a) (bayer8( .5*(a))*.25+bayer2(a))
#define bayer32(a) (bayer16(.5*(a))*.25+bayer2(a))
#define bayer64(a) (bayer32(.5*(a))*.25+bayer2(a))
#define bayer128(a) fract(bayer64(.5*(a))*.25+bayer2(a))
vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) {
float waveZ = mix(20.0,0.25,iswater);
float waveM = mix(0.0,4.0,iswater);
vec3 parallaxPos = posxz;
vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH;
float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) ;
parallaxPos.xz += waterHeight * vec;
return parallaxPos;
}
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
{
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28 + alpha * nbRot * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*sqrt(alpha);
}
//Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n);
}
vec4 hash44(vec4 p4)
{
p4 = fract(p4 * vec4(.1031, .1030, .0973, .1099));
p4 += dot(p4, p4.wzxy+33.33);
return fract((p4.xxyz+p4.yzzw)*p4.zywx);
}
vec3 TangentToWorld(vec3 N, vec3 H)
{
vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 T = normalize(cross(UpVector, N));
vec3 B = cross(N, T);
return vec3((T * H.x) + (B * H.y) + (N * H.z));
}
float GGX (vec3 n, vec3 v, vec3 l, float r, float F0) {
r*=r;r*=r;
vec3 h = l + v;
float hn = inversesqrt(dot(h, h));
float dotLH = clamp(dot(h,l)*hn,0.,1.);
float dotNH = clamp(dot(h,n)*hn,0.,1.);
float dotNL = clamp(dot(n,l),0.,1.);
float dotNHsq = dotNH*dotNH;
float denom = dotNHsq * r - dotNHsq + 1.;
float D = r / (3.141592653589793 * denom * denom);
float F = F0 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH);
float k2 = .25 * r;
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
}
vec3 applyBump(mat3 tbnMatrix, vec3 bump){
float bumpmult = 1.0;
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
return normalize(bump*tbnMatrix);
}
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
float triangularize(float dither)
{
float center = dither*2.0-1.0;
dither = center*inversesqrt(abs(center));
return clamp(dither-fsign(center),0.0,1.0);
}
vec3 fp10Dither(vec3 color,float dither){
const vec3 mantissaBits = vec3(6.,6.,5.);
vec3 exponent = floor(log2(color));
return color + dither*exp2(-mantissaBits)*exp2(exponent);
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ;
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy + (frameCounter%40000);
// vec2 coord = gl_FragCoord.xy + frameTimeCounter;
// vec2 coord = gl_FragCoord.xy;
float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) );
return noise ;
}
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
vec3 viewToWorld(vec3 viewPosition) {
vec4 pos;
pos.xyz = viewPosition;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec4 encode (vec3 n, vec2 lightmaps){
n.xy = n.xy / dot(abs(n), vec3(1.0));
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
}
float square(float x){
return x*x;
}
float gSimple(float dp, float roughness){
float k = roughness + 1;
k *= k/8.0;
return dp / (dp * (1.0-k) + k);
}
vec3 GGX2_2(vec3 n, vec3 v, vec3 l, float r, vec3 F0) {
float alpha = square(r) + 1e-4; // when roughness is zero it fucks up
vec3 h = normalize(l + v) ;
float dotNH = clamp(dot(h,n),0.,1.);
float dotVH = clamp(dot(h,v),0.,1.);
float D = alpha / (2.2 * square( (dotNH * alpha - 1.0) * square(dotNH) + 1.0) );
vec3 F = F0 + (1. - F0) * pow(clamp(1.0 - dotVH,0.0,1.0),5.0);
return F * D;
}
// float SunGGX(vec3 n, vec3 v, vec3 l, float Roughness, float F0){
// vec3 h = normalize(l + v) ;
// float dotNH = clamp(dot(h,n),0.,1.);
// float dotVH = clamp(dot(h,v),0.,1.);
// float alpha =max(square(Roughness),1e-4) ;
// float WallFresnel = F0 + (1. - F0) * pow(clamp(1.0 - dotVH,0.0,1.0),5.0);
// float Sun = square( dotNH - pow(alpha,1.5) - 1.0);
// float Final = ((alpha / (10.0 * Sun + 1e-4)) * WallFresnel);
// return Final ;
// }
float SunGGX(vec3 n, vec3 v, vec3 l, float roughness,float F0, float fresnel){
float alpha = square(roughness) + 1e-4; // when roughness is zero it fucks up
vec3 h = normalize(l + v) * mix(1.000, 1.0025, pow(fresnel,2) );
float dotLH = clamp(dot(h,l),0.,1.);
float dotNH = clamp(dot(h,n),0.,1.);
float dotNL = clamp(dot(n,l),0.,1.);
float dotNV = clamp(dot(n,v),0.,1.);
float dotVH = clamp(dot(h,v),0.,1.);
float D = alpha / (0.0541592653589793*square(square(dotNH) * (alpha - 1.0) + 1.0));
float G = gSimple(dotNV, roughness) * gSimple(dotNL, roughness);
float F = F0 + (1. - F0) * exp2((-5.55473*dotVH-6.98316)*dotVH);
return dotNL * F * (G * D / (4 * dotNV * dotNL + 1e-7));
}
vec3 normVec (vec3 vec){
return vec*inversesqrt(dot(vec,vec));
}
float getWaterHeightmap_dimension(vec2 posxz, float waveM, float waveZ, float iswater) { // water waves
vec2 movement = vec2(frameTimeCounter*0.01);
vec2 pos = posxz ;
float caustic = 1.0;
float weightSum = 0.0;
float radiance = 2.39996;
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
for (int i = 0; i < 3; i++){
pos = rotationMatrix * pos ;
float Waves = texture2D(noisetex, pos / 64.0 + movement).b;
caustic += exp2(pow(Waves,3.0) * -5.0);
weightSum += exp2(-(3.0-caustic));
}
return ((3.0-caustic) * weightSum / (30.0 * 3.0));
}
vec3 getWaveHeightmap_dimension(vec2 posxz, float iswater){
vec2 coord = posxz;
float deltaPos = 0.25;
float waveZ = mix(20.0,0.25,iswater);
float waveM = mix(0.0,4.0,iswater);
float h0 = getWaterHeightmap_dimension(coord, waveM, waveZ, iswater);
float h1 = getWaterHeightmap_dimension(coord + vec2(deltaPos,0.0), waveM, waveZ, iswater);
float h3 = getWaterHeightmap_dimension(coord + vec2(0.0,deltaPos), waveM, waveZ, iswater);
float xDelta = ((h1-h0))/deltaPos*2.;
float yDelta = ((h3-h0))/deltaPos*2.;
vec3 wave = normalize(vec3(xDelta,yDelta,1.0-pow(abs(xDelta+yDelta),2.0)));
return wave;
}
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
/* RENDERTARGETS:2,7,1,11,13,14 */
void main() {
if (gl_FragCoord.x * texelSize.x < 1 && gl_FragCoord.y * texelSize.y < 1 ) {
gl_FragData[0] = texture2D(texture, lmtexcoord.xy,Texture_MipMap_Bias)*color;
vec3 Albedo = toLinear(gl_FragData[0].rgb);
float iswater = normalMat.w;
#ifdef HAND
iswater = 0.1;
#endif
#ifndef Vanilla_like_water
if (iswater > 0.9) {
Albedo = vec3(0.0);
gl_FragData[0] = vec4(vec3(0.0),1.0/255.0);
}
#endif
#ifdef Vanilla_like_water
if (iswater > 0.5) {
gl_FragData[0].a = luma(Albedo.rgb);
Albedo = color.rgb;
}
#endif
// gl_FragData[4] = vec4(Albedo, gl_FragData[0].a);
vec2 tempOffset=offsets[framemod8];
vec3 fragC = gl_FragCoord.xyz*vec3(texelSize,1.0);
vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0));
vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
vec3 np3 = normVec(p3);
vec3 normal = normalMat.xyz;
vec3 WaterNormals;
vec3 TranslucentNormals;
mat3 tbnMatrix = mat3(tangent.x, binormal.x, normal.x,
tangent.y, binormal.y, normal.y,
tangent.z, binormal.z, normal.z);
if (iswater > 0.4){
float bumpmult = 1.;
vec3 posxz = p3+cameraPosition;
posxz.xz-=posxz.y;
vec3 bump;
posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*fragpos));
bump = normalize(getWaveHeightmap_dimension(posxz.xz,iswater));
WaterNormals = bump; // tangent space normals for refraction
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
normal = normalize(bump * tbnMatrix);
}else{
vec3 normalTex = texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).rgb;
normalTex.xy = normalTex.xy*2.0-1.0;
normalTex.z = clamp(sqrt(1.0 - dot(normalTex.xy, normalTex.xy)),0.0,1.0);
TranslucentNormals = normalTex;
normal = applyBump(tbnMatrix,normalTex);
}
TranslucentNormals += WaterNormals;
vec4 data0 = vec4(1);
vec4 data1 = clamp( encode(TranslucentNormals, lmtexcoord.zw),0.0,1.0);
gl_FragData[3] = vec4(encodeVec2(data0.x,data1.x), encodeVec2(data0.y,data1.y), encodeVec2(data0.z,data1.z), encodeVec2(data1.w,data0.w));
gl_FragData[5] = vec4(encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a), encodeVec2(lmtexcoord.a,lmtexcoord.a));
vec3 Indirect_lighting = DoAmbientLighting_Nether(gl_Fog.color.rgb, vec3(TORCH_R,TORCH_G,TORCH_B), lmtexcoord.z, viewToWorld(normal), np3, p3 + cameraPosition);
vec3 FinalColor = Indirect_lighting * Albedo;
#ifdef Glass_Tint
float alphashit = min(pow(gl_FragData[0].a,2.0),1.0);
FinalColor *= alphashit;
#endif
vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg;
SpecularTex = iswater > 0.0 && SpecularTex.r > 0.0 && SpecularTex.g < 0.9 ? SpecularTex : vec2(1.0,0.02);
if (iswater > 0.0 || (SpecularTex.g > 0.0 || SpecularTex.r > 0.0)){
vec3 Reflections_Final = vec3(0.0);
float roughness = pow(1.0-SpecularTex.r,2.0);
float f0 = SpecularTex.g;
float F0 = f0;
float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1);
vec3 reflectedVector = reflect(normalize(fragpos), normal);
float normalDotEye = dot(normal, normalize(fragpos));
float fresnel = pow(clamp(1.0 + normalDotEye,0.0,1.0), 5.0);
// snells window looking thing
if(isEyeInWater == 1 && iswater > 0.99) fresnel = clamp(pow(1.66 + normalDotEye,25),0.02,1.0);
fresnel = F0 + (1.0 - F0) * fresnel;
vec4 Reflections = vec4(0.0);
if(iswater > 0){
#ifdef SCREENSPACE_REFLECTIONS
vec3 rtPos = rayTrace(reflectedVector,fragpos.xyz, interleaved_gradientNoise(), fresnel, isEyeInWater == 1);
if (rtPos.z < 1.){
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
Reflections.a = 1.0;
Reflections.rgb = texture2D(colortex5,previousPosition.xy).rgb;
}
}
#endif
}
Reflections_Final = mix(FinalColor, Reflections.rgb, Reflections.a * fresnel * visibilityFactor);
float F2 = pow(clamp(1.0 + normalDotEye,0.0,1.0),pow(1.0-roughness,2.0) * 1.5 + 0.5);
F2 = mix(f0, 1.0, F2);
Reflections_Final += mix( gl_Fog.color.rgb * 0.25, vec3(0.0), Reflections.a * visibilityFactor) ;
gl_FragData[0].rgb = Reflections_Final;
//correct alpha channel with fresnel
float alpha0 = gl_FragData[0].a;
gl_FragData[0].a = -gl_FragData[0].a*fresnel+gl_FragData[0].a+fresnel;
if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.);
} else {
gl_FragData[0].rgb = FinalColor;
}
#ifndef HAND
gl_FragData[1] = vec4(Albedo,iswater);
#endif
}
}