Bliss-Shader/shaders/composite5.fsh

389 lines
14 KiB
Plaintext
Raw Normal View History

2023-01-12 15:00:14 -05:00
#version 120
//Volumetric fog rendering
#extension GL_EXT_gpu_shader4 : enable
2023-01-12 15:28:19 -05:00
#include "lib/settings.glsl"
2023-01-12 15:00:14 -05:00
flat varying vec4 lightCol;
flat varying vec3 ambientUp;
flat varying vec3 ambientLeft;
flat varying vec3 ambientRight;
flat varying vec3 ambientB;
flat varying vec3 ambientF;
flat varying vec3 ambientDown;
flat varying vec3 avgAmbient;
flat varying float tempOffsets;
flat varying float fogAmount;
flat varying float VFAmount;
flat varying float FogSchedule;
uniform sampler2D noisetex;
uniform sampler2D depthtex0;
uniform sampler2D depthtex1;
uniform sampler2DShadow shadow;
flat varying vec3 refractedSunVec;
flat varying vec3 WsunVec;
uniform sampler2D colortex1;
uniform sampler2D colortex2;
uniform sampler2D colortex3;
// uniform sampler2D colortex4;
uniform vec3 sunVec;
uniform float far;
uniform float near;
uniform int frameCounter;
uniform float rainStrength;
uniform float sunElevation;
uniform ivec2 eyeBrightnessSmooth;
uniform float frameTimeCounter;
uniform int isEyeInWater;
uniform vec2 texelSize;
#include "lib/Shadow_Params.glsl"
#include "lib/color_transforms.glsl"
#include "lib/color_dither.glsl"
#include "lib/projections.glsl"
#include "lib/sky_gradient.glsl"
#include "/lib/res_params.glsl"
// #include "lib/biome_specifics.glsl"
#define TIMEOFDAYFOG
#include "lib/volumetricClouds.glsl"
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ;
}
float R2_dither2(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x *(1- gl_FragCoord.x) + alpha.y * (1-gl_FragCoord.y) + 1.0/1.6180339887 * frameCounter) ;
}
float interleaved_gradientNoise(){
vec2 alpha = vec2(0.75487765, 0.56984026);
vec2 coord = vec2(alpha.x * gl_FragCoord.x,alpha.y * gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
float phaseRayleigh(float cosTheta) {
const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0);
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
}
float GetCloudShadow(vec3 eyePlayerPos){
vec3 worldPos = (eyePlayerPos + cameraPosition) - Cloud_Height;
vec3 cloudPos = worldPos*Cloud_Size + WsunVec/abs(WsunVec.y) * ((3250 - 3250*0.35) - worldPos.y*Cloud_Size) ;
float shadow = getCloudDensity(cloudPos, 1);
shadow = clamp(exp(-shadow*5),0.0,1.0);
return shadow ;
}
float densityAtPosFog(in vec3 pos){
pos /= 18.;
pos.xz *= 0.5;
vec3 p = floor(pos);
vec3 f = fract(pos);
f = (f*f) * (3.-2.*f);
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
vec2 coord = uv / 512.0;
vec2 xy = texture2D(noisetex, coord).yx;
return mix(xy.r,xy.g, f.y);
}
float fog_densities_atmospheric = 24 * Haze_amount; // this is seperate from the cloudy and uniform fog.
float cloudVol(in vec3 pos){
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
float mult = exp( -max((pos.y - SEA_LEVEL) / 35.,0.0));
float fog_shape = 1-densityAtPosFog(samplePos * 24.0);
float fog_eroded = 1-densityAtPosFog( samplePos2 * 200.0);
float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, 0.0) * mult;
float UniformFog = exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0));
float RainFog = max(fog_shape*10. - 7.,0.5) * exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)) * 5. * rainStrength;
TimeOfDayFog(UniformFog, CloudyFog);
return CloudyFog + UniformFog + RainFog;
}
mat2x3 getVolumetricRays(
float dither,
vec3 fragpos,
float dither2
){
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.));
//rayvector into projected shadow map space
//we can use a projected vector because its orthographic projection
//however we still have to send it to curved shadow map space every step
vec3 dV = fragposition-start;
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
2023-01-12 15:28:19 -05:00
float maxLength = min(length(dVWorld),far)/length(dVWorld);
2023-01-12 15:00:14 -05:00
dV *= maxLength;
dVWorld *= maxLength;
//apply dither
vec3 progress = start.xyz;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
vec3 vL = vec3(0.);
float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a;
float dL = length(dVWorld);
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
float mie = phaseg(SdotV,0.7)*5.0 + 1.0;
float rayL = phaseRayleigh(SdotV);
// Makes fog more white idk how to simulate it correctly
vec3 sunColor = lightCol.rgb / 127.0;
vec3 skyCol0 = (ambientUp / 150. * 5.); // * max(abs(WsunVec.y)/150.0,0.);
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
float mu = 1.0;
float muS = mu;
vec3 absorbance = vec3(1.0);
float expFactor = 11.0;
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
float cloudShadow = 1.0;
for (int i=0;i<VL_SAMPLES;i++) {
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
progress = start.xyz + d*dV;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
//project into biased shadowmap space
float distortFactor = calcDistort(progress.xy);
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
float densityVol = cloudVol(progressW);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D( shadow, pos).x;
}
#ifdef VOLUMETRIC_CLOUDS
#ifdef CLOUDS_SHADOWS
#ifdef VL_CLOUDS_SHADOWS
float max_height = clamp(400.0 - progressW.y, 0.0,1.0); // so it doesnt go beyond the height of the clouds
vec3 campos = (progressW)-319;
// get cloud position
vec3 cloudPos = campos*Cloud_Size + WsunVec/abs(WsunVec.y) * (2250 - campos.y*Cloud_Size);
// get the cloud density and apply it
cloudShadow = getCloudDensity(cloudPos, 1);
cloudShadow = exp(-cloudShadow*cloudDensity*200);
cloudShadow *= max_height;
// cloudShadow *= 1000; //debug
#endif
#endif
#endif
//Water droplets(fog)
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
//Just air
vec2 airCoef = exp(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 24;
//Pbr for air, yolo mix between mie and rayleigh for water droplets
vec3 rL = rC*airCoef.x;
vec3 m = (airCoef.y+density)*mC;
vec3 DirectLight = (sunColor*sh*cloudShadow) * (rayL*rL+m*mie);
vec3 AmbientLight = skyCol0 * m;
vec3 AtmosphericFog = skyCol0 * (rL+m) ;
// extra fog effects
vec3 rainRays = (sunColor*sh*cloudShadow) * (rayL*phaseg(SdotV,0.6)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength;
vec3 CaveRays = (sunColor*sh*cloudShadow) * phaseg(SdotV,0.7) * 0.001 * (1.0 - max(eyeBrightnessSmooth.y,0)/240.);
vec3 vL0 = ( DirectLight + AmbientLight + AtmosphericFog + rainRays) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
#ifdef Biome_specific_environment
BiomeFogColor(vL0); // ?????
#endif
vL += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0);
}
return mat2x3(vL,absorbance);
}
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
vec2 movement = vec2(-0.035*frameTimeCounter);
float caustic = 0.0;
float weightSum = 0.0;
float radiance = 2.39996;
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
const vec2 wave_size[4] = vec2[](
vec2(64.),
vec2(32.,16.),
vec2(16.,32.),
vec2(48.)
);
for (int i = 0; i < 4; i++){
pos = rotationMatrix * pos;
vec2 speed = movement;
float waveStrength = 1.0;
if( i == 0) {
speed *= 0.15;
waveStrength = 2.0;
}
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
weightSum -= exp2(caustic*0.1);
}
return caustic / weightSum;
}
vec3 normVec (vec3 vec){
return vec*inversesqrt(dot(vec,vec));
}
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
int spCount = 8;
vec3 start = toShadowSpaceProjected(rayStart);
vec3 end = toShadowSpaceProjected(rayEnd);
vec3 dV = (end-start);
//limit ray length at 32 blocks for performance and reducing integration error
//you can't see above this anyway
float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
dV *= maxZ;
vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
rayLength *= maxZ;
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
vec3 absorbance = vec3(1.0);
vec3 vL = vec3(0.0);
float phase = 2*mix(phaseg(VdotL, 0.4),phaseg(VdotL, 0.8),0.5);
float expFactor = 11.0;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
float cloudShadow = 1;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
vec3 spPos = start.xyz + dV*d;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
//project into biased shadowmap space
float distortFactor = calcDistort(spPos.xy);
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D( shadow, pos).x;
}
#ifdef VOLUMETRIC_CLOUDS
#ifdef CLOUDS_SHADOWS
vec3 campos = (progressW)-319;
// get cloud position
vec3 cloudPos = campos*Cloud_Size + WsunVec/abs(WsunVec.y) * (2250 - campos.y*Cloud_Size);
// get the cloud density and apply it
float cloudShadow = getCloudDensity(cloudPos, 1);
// cloudShadow = exp(-cloudShadow*sqrt(cloudDensity)*50);
cloudShadow = clamp(exp(-cloudShadow*6),0.0,1.0);
sh *= cloudShadow;
#endif
#endif
vec3 p3 = mat3(gbufferModelViewInverse) * rayEnd;
vec3 np3 = normVec(p3);
float ambfogfade = clamp(exp(np3.y*1.5 - 1.5),0.0,1.0) ;
vec3 ambientMul = exp(-max(estEyeDepth - dY * d,0.0) * waterCoefs) + ambfogfade*0.5 ;
vec3 sunMul = exp(-max((estEyeDepth - dY * d) ,0.0)/abs(refractedSunVec.y) * waterCoefs)*cloudShadow;
float sunCaustics = waterCaustics(progressW, WsunVec);
sunCaustics = max(pow(sunCaustics*3,2),0.5);
vec3 light = (sh * lightSource * phase * sunCaustics * sunMul + (ambient*ambientMul))*scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
absorbance *= exp(-dd * rayLength * waterCoefs);
}
inColor += vL;
}
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
void main() {
/* DRAWBUFFERS:0 */
float lightleakfix = max(eyeBrightnessSmooth.y,0)/240.;
if (isEyeInWater == 0){
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
float z = texture2D(depthtex0,tc).x;
vec3 fragpos = toScreenSpace(vec3(tc/RENDER_SCALE,z));
float noise = blueNoise();
mat2x3 vl = getVolumetricRays(noise,fragpos,blueNoise());
float absorbance = dot(vl[1],vec3(0.22,0.71,0.07));
gl_FragData[0] = clamp(vec4(vl[0],absorbance),0.000001,65000.);
} else {
float dirtAmount = Dirt_Amount;
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B);
2023-01-15 03:27:24 +00:00
#ifdef AEROCHROME_MODE
totEpsilon *= 2.0;
scatterCoef *= 10.0;
#endif
2023-01-12 15:00:14 -05:00
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
float z = texture2D(depthtex0,tc).x;
vec3 fragpos = toScreenSpace(vec3(tc/RENDER_SCALE,z));
float noise = R2_dither();
vec3 vl = vec3(0.0);
float estEyeDepth = clamp((14.0-eyeBrightnessSmooth.y/255.0*16.0)/14.0,0.,1.0);
estEyeDepth *= estEyeDepth*estEyeDepth*34.0;
2023-01-15 03:27:24 +00:00
2023-01-12 15:00:14 -05:00
#ifndef lightMapDepthEstimation
estEyeDepth = max(Water_Top_Layer - cameraPosition.y,0.0);
#endif
waterVolumetrics(vl, vec3(0.0), fragpos, estEyeDepth, estEyeDepth, length(fragpos), noise, totEpsilon, scatterCoef, (ambientUp*8./150./3.*0.5) , lightCol.rgb*8./150./3.0*(1.0-pow(1.0-sunElevation*lightCol.a,5.0)), dot(normalize(fragpos), normalize(sunVec) ));
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
}
}