Bliss-Shader/shaders/world1/composite.fsh

469 lines
15 KiB
Plaintext
Raw Normal View History

#version 120
#extension GL_EXT_gpu_shader4 : enable
#include "/lib/settings.glsl"
#include "/lib/diffuse_lighting.glsl"
varying vec2 texcoord;
flat varying vec3 avgAmbient;
flat varying vec2 TAA_Offset;
flat varying float tempOffsets;
const bool colortex5MipmapEnabled = true;
const bool colortex4MipmapEnabled = true;
uniform sampler2D colortex0;//clouds
uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16
uniform sampler2D colortex4;//Skybox
uniform sampler2D colortex3;
uniform sampler2D colortex7;
uniform sampler2D colortex5;
uniform sampler2D colortex2;
uniform sampler2D colortex8;
uniform sampler2D colortex10;
uniform sampler2D colortex15;
uniform sampler2D colortex6;//Skybox
uniform sampler2D depthtex1;//depth
uniform sampler2D depthtex0;//depth
uniform sampler2D noisetex;//depth
uniform int heldBlockLightValue;
uniform int frameCounter;
uniform int isEyeInWater;
uniform mat4 shadowModelViewInverse;
uniform mat4 shadowProjectionInverse;
uniform float far;
uniform float near;
uniform float frameTimeCounter;
uniform float rainStrength;
uniform mat4 gbufferProjection;
uniform mat4 gbufferProjectionInverse;
uniform mat4 gbufferModelViewInverse;
uniform mat4 shadowModelView;
uniform mat4 shadowProjection;
uniform mat4 gbufferModelView;
uniform mat4 gbufferPreviousModelView;
uniform mat4 gbufferPreviousProjection;
uniform vec3 previousCameraPosition;
uniform vec2 texelSize;
uniform float viewWidth;
uniform float viewHeight;
uniform float aspectRatio;
uniform vec3 cameraPosition;
uniform vec3 sunVec;
uniform ivec2 eyeBrightnessSmooth;
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
vec3 toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
vec3 p3 = p * 2. - 1.;
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
return fragposition.xyz / fragposition.w;
}
#include "/lib/color_transforms.glsl"
#include "/lib/waterBump.glsl"
#include "/lib/sky_gradient.glsl"
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec2 RENDER_SCALE = vec2(1.0);
#include "/lib/end_fog.glsl"
#include "/lib/specular.glsl"
vec3 normVec (vec3 vec){
return vec*inversesqrt(dot(vec,vec));
}
float lengthVec (vec3 vec){
return sqrt(dot(vec,vec));
}
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
float triangularize(float dither)
{
float center = dither*2.0-1.0;
dither = center*inversesqrt(abs(center));
return clamp(dither-fsign(center),0.0,1.0);
}
float interleaved_gradientNoise(float temp){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+temp);
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
vec3 fp10Dither(vec3 color,float dither){
const vec3 mantissaBits = vec3(6.,6.,5.);
vec3 exponent = floor(log2(color));
return color + dither*exp2(-mantissaBits)*exp2(exponent);
}
float facos(float sx){
float x = clamp(abs( sx ),0.,1.);
return sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 );
}
vec3 decode (vec2 encn){
vec3 n = vec3(0.0);
encn = encn * 2.0 - 1.0;
n.xy = abs(encn);
n.z = 1.0 - n.x - n.y;
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
return clamp(normalize(n.xyz),-1.0,1.0);
}
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
return fract( a * constant1 ) * constant2 ;
}
// float linZ(float depth) {
// return (2.0 * near) / (far + near - depth * (far - near));
// // l = (2*n)/(f+n-d(f-n))
// // f+n-d(f-n) = 2n/l
// // -d(f-n) = ((2n/l)-f-n)
// // d = -((2n/l)-f-n)/(f-n)
// }
// float invLinZ (float lindepth){
// return -((2.0*near/lindepth)-far-near)/(far-near);
// }
// vec3 toClipSpace3(vec3 viewSpacePosition) {
// return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
// }
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
{
float alpha0 = sampleNumber/nb;
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28 + alpha * 4.0 * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*sqrt(alpha);
}
vec3 BilateralFiltering(sampler2D tex, sampler2D depth,vec2 coord,float frDepth,float maxZ){
vec4 sampled = vec4(texelFetch2D(tex,ivec2(coord),0).rgb,1.0);
return vec3(sampled.x,sampled.yz/sampled.w);
}
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y);
}
vec3 toShadowSpaceProjected(vec3 p3){
p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz;
p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz;
p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz;
return p3;
}
vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0)
{
float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb)));
float angle = alpha * (nbRot * 6.28) + spinAngle*6.28;
float ssR = alpha;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*ssR;
}
float ssao(vec3 fragpos, float dither,vec3 normal)
{
float mulfov = 1.0;
ivec2 pos = ivec2(gl_FragCoord.xy);
const float tan70 = tan(70.*3.14/180.);
float mulfov2 = gbufferProjection[1][1]/tan70;
const float PI = 3.14159265;
const float samplingRadius = 0.712;
float angle_thresh = 0.05;
float rd = mulfov2*0.05;
//pre-rotate direction
float n = 0.;
float occlusion = 0.0;
vec2 acc = -vec2(TAA_Offset)*texelSize*0.5;
float mult = (dot(normal,normalize(fragpos))+1.0)*0.5+0.5;
vec2 v = fract(vec2(dither,interleaved_gradientNoise()) + (frameCounter%10000) * vec2(0.75487765, 0.56984026));
for (int j = 0; j < 7+2 ;j++) {
vec2 sp = tapLocation(j,v.x,7+2,2.,v.y);
vec2 sampleOffset = sp*rd;
ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight));
if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) {
vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x));
vec3 vec = t0.xyz - fragpos;
float dsquared = dot(vec,vec);
if (dsquared > 1e-5){
if (dsquared < fragpos.z*fragpos.z*0.05*0.05*mulfov2*2.*1.412){
float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.);
occlusion += NdotV;
}
n += 1.0;
}
}
}
return clamp(1.0-occlusion/n*2.0,0.,1.0);
}
vec3 viewToWorld(vec3 viewPosition) {
vec4 pos;
pos.xyz = viewPosition;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
int spCount = rayMarchSampleCount;
vec3 start = toShadowSpaceProjected(rayStart);
vec3 end = toShadowSpaceProjected(rayEnd);
vec3 dV = (end-start);
//limit ray length at 32 blocks for performance and reducing integration error
//you can't see above this anyway
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
dV *= maxZ;
vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
rayLength *= maxZ;
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
estEndDepth *= maxZ;
estSunDepth *= maxZ;
vec3 absorbance = vec3(1.0);
vec3 vL = vec3(0.0);
float expFactor = 11.0;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
vec3 spPos = start.xyz + dV*d;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs);
vec3 light = (ambientMul*ambient) * scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
absorbance *= exp(-dd * rayLength * waterCoefs);
}
inColor += vL;
}
vec4 blueNoise(vec2 coord){
return texelFetch2D(colortex6, ivec2(coord )%512 , 0);
}
void LabEmission(
inout vec3 Lighting,
vec3 Albedo,
float Emission
){
// if( Emission < 255.0/255.0 ) Lighting = mix(Lighting, Albedo * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why
if( Emission < 255.0/255.0 ) Lighting += (Albedo * Emissive_Brightness) * pow(Emission, Emissive_Curve);
}
float rayTraceShadow(vec3 dir,vec3 position,float dither){
const float quality = 16.;
vec3 clipPosition = toClipSpace3(position);
//prevents the ray from going behind the camera
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
(-near -position.z) / dir.z : far*sqrt(3.) ;
vec3 direction = toClipSpace3(position+dir*rayLength)-clipPosition; //convert to clip space
direction.xyz = direction.xyz/max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y); //fixed step size
vec3 stepv = direction * 3.0 * clamp(MC_RENDER_QUALITY,1.,2.0)*vec3(RENDER_SCALE,1.0);
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0);
spos += stepv*dither ;
for (int i = 0; i < int(quality); i++) {
spos += stepv;
float sp = texture2D(depthtex1,spos.xy).x;
if( sp < spos.z) {
float dist = abs(linZ(sp)-linZ(spos.z))/linZ(spos.z);
if (dist < 0.015 ) return i / quality;
}
}
return 1.0;
}
void main() {
float dirtAmount = Dirt_Amount;
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
float z0 = texture2D(depthtex0,texcoord).x;
float z = texture2D(depthtex1,texcoord).x;
vec2 tempOffset=TAA_Offset;
float noise = blueNoise();
vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z));
vec3 fragpos_RTSHADOW = toScreenSpace(vec3(texcoord,z));
vec3 p3 = mat3(gbufferModelViewInverse) * fragpos;
vec3 np3 = normVec(p3);
vec4 trpData = texture2D(colortex7,texcoord);
bool iswater = trpData.a > 0.99;
vec4 SpecularTex = texture2D(colortex8,texcoord);
bool isEntities = texture2D(colortex10,texcoord).x > 0.0;
vec4 data = texture2D(colortex1,texcoord); // terraom
vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y));
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
float Translucent_Programs = texture2D(colortex2,texcoord).a; // the shader for all translucent progams.
// Normal //
vec3 normal = decode(dataUnpacked0.yw) ;
vec4 normalAndAO = texture2D(colortex15,texcoord);
vec3 FlatNormals = normalAndAO.rgb * 2.0 - 1.0;
float vanilla_AO = 1.0 - exp2(-5 * pow(1-normalAndAO.a,3)) ;
vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x));
vec2 lightmap = dataUnpacked1.yz;
bool translucent = abs(dataUnpacked1.w-0.5) <0.01;
bool hand = abs(dataUnpacked1.w-0.75) <0.01;
if (z >= 1.0) {
gl_FragData[0].rgb = vec3(0.0);
} else {
p3 += gbufferModelViewInverse[3].xyz;
// do all ambient lighting stuff
vec3 Indirect_lighting = DoAmbientLighting_End(gl_Fog.color.rgb, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, normal, np3) ;
// Indirect_lighting = vec3(TORCH_R,TORCH_G,TORCH_B) * curveinvert(clamp(lightmap.x,0.0,1.0),2);
// float ambientfogshadow = GetCloudShadow2(p3+cameraPosition);
// Indirect_lighting *= ambientfogshadow;
vec3 LightColor = LightSourceColor(clamp(sqrt(length(p3+cameraPosition) / 150.0 - 1.0) ,0.0,1.0));
vec3 LightPos = LightSourcePosition(p3+cameraPosition, cameraPosition);
// float LightFalloff = max(exp2(4.0 + length(LightPos) / -50),0.0);
float LightFalloff = max(1.0-length(LightPos)/255,0.0);
LightFalloff = pow(1.0-pow(1.0-LightFalloff,0.5),2.0);
LightFalloff *= 10.0;
// 0.5 added because lightsources are always high radius.
float NdotL = clamp( dot(normal,normalize(-LightPos)),0.0,1.0);
float fogshadow = GetCloudShadow(p3+cameraPosition, LightPos, blueNoise());
vec3 LightSource = (LightColor * max(LightColor - (1-fogshadow) ,0.0)) * LightFalloff * NdotL ;
2023-06-13 14:36:07 -04:00
// vec3 LightSource = LightColor * fogshadow * LightFalloff * NdotL ;
float LightFalloff2 = max(1.0-length(LightPos)/120,0.0);
LightFalloff2 = pow(1.0-pow(1.0-LightFalloff2,0.5),2.0);
LightFalloff2 *= 25;
2023-06-13 14:36:07 -04:00
LightSource += (LightColor * max(LightColor - 0.6,0.0)) * vec3(1.0,1.3,1.0) * LightFalloff2 * (NdotL*0.7+0.3);
// float RT_Shadows = rayTraceShadow(worldToView(normalize(-LightPos)), fragpos_RTSHADOW, blueNoise());
// if(!hand) LightSource *= RT_Shadows*RT_Shadows;
// finalize
gl_FragData[0].rgb = (Indirect_lighting + LightSource) * albedo;
#ifdef Specular_Reflections
MaterialReflections_E(gl_FragData[0].rgb, SpecularTex.r, SpecularTex.ggg, albedo, normal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg,noise), hand, LightColor * LightFalloff, normalize(-LightPos), isEntities);
#endif
if(!hand) gl_FragData[0].rgb *= ssao(fragpos,noise,FlatNormals) * vanilla_AO;
#ifdef LabPBR_Emissives
LabEmission(gl_FragData[0].rgb, albedo, SpecularTex.a);
#endif
}
////// border Fog
if(Translucent_Programs > 0.0){
vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(0.0)*texelSize*0.5,z));
float fogdistfade = 1.0 - clamp( exp(-pow(length(fragpos / far),2.)*5.0) ,0.0,1.0);
gl_FragData[0].rgb = mix(gl_FragData[0].rgb, gl_Fog.color.rgb*0.5*NetherFog_brightness, fogdistfade) ;
}
////// Water Fog
if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){
vec3 fragpos0 = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z0));
float Vdiff = distance(fragpos,fragpos0);
if(isEyeInWater == 1) Vdiff = (length(fragpos));
float VdotU = np3.y;
float estimatedDepth = Vdiff; //assuming water plane
float estimatedSunDepth = estimatedDepth; //assuming water plane
vec3 ambientColVol = vec3(1.0,0.25,0.5) * 0.33 ;
waterVolumetrics(gl_FragData[0].rgb, fragpos0, fragpos, estimatedDepth , estimatedSunDepth, Vdiff, noise, totEpsilon, scatterCoef, ambientColVol);
}
/* DRAWBUFFERS:3 */
}