Bliss-Shader/shaders/dimensions/all_translucent.fsh

431 lines
12 KiB
Plaintext
Raw Normal View History

#include "/lib/settings.glsl"
#include "/lib/res_params.glsl"
varying vec4 lmtexcoord;
varying vec4 color;
const bool colortex4MipmapEnabled = true;
uniform sampler2D noisetex;
uniform sampler2D depthtex1;
uniform sampler2D colortex5;
uniform sampler2D texture;
uniform sampler2D specular;
uniform sampler2D normals;
varying vec4 tangent;
varying vec4 normalMat;
varying vec3 binormal;
varying vec3 viewVector;
uniform vec3 sunVec;
uniform float near;
uniform float far;
uniform float sunElevation;
uniform int isEyeInWater;
uniform float rainStrength;
uniform float skyIntensityNight;
uniform float skyIntensity;
uniform int frameCounter;
uniform float frameTimeCounter;
uniform vec2 texelSize;
uniform int framemod8;
flat varying vec3 WsunVec;
uniform mat4 gbufferPreviousModelView;
uniform vec3 previousCameraPosition;
uniform float moonIntensity;
uniform float sunIntensity;
uniform vec3 sunColor;
uniform vec3 nsunColor;
#include "/lib/Shadow_Params.glsl"
#include "/lib/color_transforms.glsl"
#include "/lib/projections.glsl"
#include "/lib/sky_gradient.glsl"
#include "/lib/waterBump.glsl"
#include "/lib/clouds.glsl"
#include "/lib/stars.glsl"
#include "/lib/volumetricClouds.glsl"
#define OVERWORLD
#include "/lib/diffuse_lighting.glsl"
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ;
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy + (frameCounter%40000);
// vec2 coord = gl_FragCoord.xy + frameTimeCounter;
// vec2 coord = gl_FragCoord.xy;
float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) );
return noise ;
}
float interleaved_gradientNoise(float temporal){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y)+temporal);
return noise;
}
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
vec2(-1.,3.)/8.,
vec2(5.0,1.)/8.,
vec2(-3,-5.)/8.,
vec2(-5.,5.)/8.,
vec2(-7.,-1.)/8.,
vec2(3,7.)/8.,
vec2(7.,-7.)/8.);
#define PW_DEPTH 1.0 //[0.5 1.0 1.5 2.0 2.5 3.0]
#define PW_POINTS 1 //[2 4 6 8 16 32]
vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) {
float waveZ = mix(20.0,0.25,iswater);
float waveM = mix(0.0,4.0,iswater);
vec3 parallaxPos = posxz;
vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH;
float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) ;
parallaxPos.xz += waterHeight * vec;
return parallaxPos;
}
vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){
float bumpmult = 1;
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
return normalize(bump*tbnMatrix);
}
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
{
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28 + alpha * nbRot * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*sqrt(alpha);
}
vec3 viewToWorld(vec3 viewPosition) {
vec4 pos;
pos.xyz = viewPosition;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec4 encode (vec3 n, vec2 lightmaps){
n.xy = n.xy / dot(abs(n), vec3(1.0));
n.xy = n.z <= 0.0 ? (1.0 - abs(n.yx)) * sign(n.xy) : n.xy;
vec2 encn = clamp(n.xy * 0.5 + 0.5,-1.0,1.0);
return vec4(encn,vec2(lightmaps.x,lightmaps.y));
}
//encoding by jodie
float encodeVec2(vec2 a){
const vec2 constant1 = vec2( 1., 256.) / 65535.;
vec2 temp = floor( a * 255. );
return temp.x*constant1.x+temp.y*constant1.y;
}
float encodeVec2(float x,float y){
return encodeVec2(vec2(x,y));
}
float invLinZ (float lindepth){
return -((2.0*near/lindepth)-far-near)/(far-near);
}
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec3 rayTrace(vec3 dir,vec3 position,float dither, float fresnel, bool inwater){
float quality = mix(15,SSR_STEPS,fresnel);
vec3 clipPosition = toClipSpace3(position);
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
(-near -position.z) / dir.z : far*sqrt(3.);
vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
direction.xy = normalize(direction.xy);
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z);
vec3 stepv = direction * mult / quality;
vec3 spos = clipPosition+ stepv*dither;
float minZ = clipPosition.z;
float maxZ = spos.z+stepv.z*0.5;
spos.xy += offsets[framemod8]*texelSize*0.5;
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
for (int i = 0; i <= int(quality); i++) {
#ifdef USE_QUARTER_RES_DEPTH
// decode depth buffer
float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0);
sp = invLinZ(sp);
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy,sp);
#else
float sp = texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).r;
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy,sp);
#endif
spos += stepv;
//small bias
minZ = maxZ-(0.0001/dist)/ld(spos.z);
if(inwater) minZ = maxZ-0.0004/ld(spos.z);
maxZ += stepv.z;
}
return vec3(1.1);
}
vec3 GGX (vec3 n, vec3 v, vec3 l, float r, vec3 F0) {
r = pow(r,2.5);
// r*=r;
vec3 h = l + v;
float hn = inversesqrt(dot(h, h));
float dotLH = clamp(dot(h,l)*hn,0.,1.);
float dotNH = clamp(dot(h,n)*hn,0.,1.) ;
float dotNL = clamp(dot(n,l),0.,1.);
float dotNHsq = dotNH*dotNH;
float denom = dotNHsq * r - dotNHsq + 1.;
float D = r / (3.141592653589793 * denom * denom);
vec3 F = F0 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH);
float k2 = .25 * r;
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
}
#define PHYSICSMOD_FRAGMENT
#include "/lib/oceans.glsl"
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
//////////////////////////////VOID MAIN//////////////////////////////
/* RENDERTARGETS:2,7,11,14 */
void main() {
if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 ) {
vec2 tempOffset = offsets[framemod8];
vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0));
gl_FragData[0] = texture2D(texture, lmtexcoord.xy, Texture_MipMap_Bias) * color;
vec3 Albedo = toLinear(gl_FragData[0].rgb);
float UnchangedAlpha = gl_FragData[0].a;
float iswater = normalMat.w;
#ifdef HAND
iswater = 0.1;
#endif
#ifdef Vanilla_like_water
if (iswater > 0.5) {
gl_FragData[0].a = luma(Albedo.rgb);
Albedo = color.rgb * sqrt(luma(Albedo.rgb));
}
#else
if (iswater > 0.9) {
Albedo = vec3(0.0);
gl_FragData[0] = vec4(vec3(0.0),1.0/255.0);
}
#endif
vec4 COLORTEST = vec4(Albedo,UnchangedAlpha);
vec3 p3 = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
vec3 normal = normalMat.xyz;
vec2 TangentNormal = vec2(0); // for refractions
vec3 tangent2 = normalize(cross(tangent.rgb,normal)*tangent.w);
mat3 tbnMatrix = mat3(tangent.x, tangent2.x, normal.x,
tangent.y, tangent2.y, normal.y,
tangent.z, tangent2.z, normal.z);
/// ------ NORMALS ------ ///
vec4 NormalTex = texture2D(normals, lmtexcoord.xy, Texture_MipMap_Bias).rgba;
NormalTex.xy = NormalTex.xy*2.0-1.0;
NormalTex.z = clamp(sqrt(1.0 - dot(NormalTex.xy, NormalTex.xy)),0.0,1.0) ;
TangentNormal = NormalTex.xy*0.5+0.5;
normal = applyBump(tbnMatrix, NormalTex.xyz, 1.0);
if (iswater > 0.95){
float bumpmult = 1.0;
vec3 bump = vec3(0);
vec3 posxz = p3+cameraPosition;
posxz.xz -= posxz.y;
posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*fragpos)) ;
bump = normalize(getWaveHeight(posxz.xz,iswater));
TangentNormal = bump.xy*0.5+0.5; // tangent space normals for refraction
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
normal = normalize(bump * tbnMatrix);
}
gl_FragData[2] = vec4(encodeVec2(TangentNormal), encodeVec2(COLORTEST.rg), encodeVec2(COLORTEST.ba), UnchangedAlpha);
vec3 WS_normal = viewToWorld(normal);
vec2 lightmaps2 = lmtexcoord.zw;
vec3 Indirect_lighting = vec3(0.0);
#ifdef NETHER_SHADER
WS_normal.xz = -WS_normal.xz;
vec3 AmbientLightColor = skyCloudsFromTexLOD2(WS_normal, colortex4, 6).rgb / 15;
vec3 up = skyCloudsFromTexLOD2(vec3( 0, 1, 0), colortex4, 6).rgb / 15;
vec3 down = skyCloudsFromTexLOD2(vec3( 0,-1, 0), colortex4, 6).rgb / 15;
up *= pow( max( WS_normal.y, 0), 2);
down *= pow( max(-WS_normal.y, 0), 2);
AmbientLightColor += up + down;
// do all ambient lighting stuff
Indirect_lighting = DoAmbientLighting_Nether(AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmaps2.x, vec3(0.0), vec3(0.0), vec3(0.0));
#endif
#ifdef END_SHADER
// do all ambient lighting stuff
Indirect_lighting = DoAmbientLighting_End(gl_Fog.color.rgb, vec3(TORCH_R,TORCH_G,TORCH_B), lightmaps2.x, normal, p3 );
#endif
vec3 FinalColor = Indirect_lighting * Albedo;
#ifdef Glass_Tint
float alphashit = min(pow(gl_FragData[0].a,2.0),1.0);
FinalColor *= alphashit;
#endif
#ifdef WATER_REFLECTIONS
vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg;
SpecularTex = (iswater > 0.0 && iswater < 0.9) && SpecularTex.r > 0.0 && SpecularTex.g < 0.9 ? SpecularTex : vec2(1.0,0.1);
float roughness = max(pow(1.0-SpecularTex.r,2.0),0.05);
float f0 = SpecularTex.g;
if (iswater > 0.0){
vec3 Reflections_Final = vec3(0.0);
vec4 Reflections = vec4(0.0);
vec3 SkyReflection = vec3(0.0);
vec3 reflectedVector = reflect(normalize(fragpos), normal);
float normalDotEye = dot(normal, normalize(fragpos));
float fresnel = pow(clamp(1.0 + normalDotEye,0.0,1.0), 5.0);
// snells window looking thing
if(isEyeInWater == 1 ) fresnel = pow(clamp(1.66 + normalDotEye,0.0,1.0), 25.0);
fresnel = mix(f0, 1.0, fresnel);
vec3 wrefl = mat3(gbufferModelViewInverse)*reflectedVector;
// SSR, Sky, and Sun reflections
#ifdef WATER_BACKGROUND_SPECULAR
SkyReflection = skyCloudsFromTexLOD2(wrefl, colortex4, 0).rgb / 30.0;
if(isEyeInWater == 1) SkyReflection = vec3(0.0);
#endif
#ifdef SCREENSPACE_REFLECTIONS
if(iswater > 0.0){
vec3 rtPos = rayTrace(reflectedVector,fragpos.xyz, interleaved_gradientNoise(), fresnel, isEyeInWater == 1);
if (rtPos.z < 1.){
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rtPos) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0) {
Reflections.a = 1.0;
Reflections.rgb = texture2D(colortex5,previousPosition.xy).rgb;
}
}
}
#endif
float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1);
Reflections_Final = mix(SkyReflection, Reflections.rgb, Reflections.a);
Reflections_Final = mix(FinalColor, Reflections_Final, fresnel * visibilityFactor);
gl_FragData[0].rgb = Reflections_Final;
//correct alpha channel with fresnel
gl_FragData[0].a = mix(gl_FragData[0].a, 1.0, fresnel);
if (gl_FragData[0].r > 65000.) gl_FragData[0].rgba = vec4(0.);
} else {
gl_FragData[0].rgb = FinalColor;
}
#else
gl_FragData[0].rgb = FinalColor;
#endif
#ifndef HAND
gl_FragData[1] = vec4(Albedo,iswater);
#endif
gl_FragData[3].a = max(lmtexcoord.w*blueNoise()*0.05 + lmtexcoord.w,0.0);
}
}